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Abstra
t

In this paper we prove with 
omputer assistan
e the existen
e of 
haos in

a suitable Poin
ar�e map generated by the Lorenz system of equations. By


haos we mean the existen
e of symboli
 dynami
s with in�nite number of

periodi
 traje
tories. The proof 
ombines abstra
t results based on the �xed

point index and �nite rigorous 
omputer 
al
ulations. Dis
ussion 
on
erning

numeri
al algorithms is also in
luded.
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0 Introdu
tion

The Lorenz system of equations (1) introdu
ed by Lorenz [L℄ is one of standard

examples of deterministi
 
haos.

_x = s(y � x);

_y = rx� y � xz; (1)

_z = xy � qz;

For various parameter values one 
an observe di�erent behavior of solutions, bi-

fur
ations of periodi
 traje
tories, horseshoes, strange attra
tors, et
. (see the

book of Sparrow [Sp℄). For parameter values (s; r; q) = (10; 28; 8=3) one observe

the famous Lorenz attra
tor. Pi
ture of this attra
tor 
an be found in almost ev-

ery modern book 
on
erning dynami
al systems or 
haos, see for example book

of Gu
kenheimer and Holmes [GH℄. On the 
on
eptual level the Lorenz attra
tor

is well understood in terms of geometri
al models [W℄, [ABS1℄, [ABS2℄, [Sh℄. On

the other hand a number of rigorous results 
on
erning 
haoti
 dynami
s in the

Lorenz system is rather small. The main diÆ
ulty is the inability to obtain esti-

mates whi
h show rigorously that assumptions of these models are satis�ed. This

diÆ
ulty is, of 
ourse, not unique to the Lorenz system. In fa
t, obtaining the

ne
essary estimates is the 
entral obsta
le for most of non-linear analysis. In the

result we report here the 
omputer was used to over
ome these diÆ
ulties.

The �rst rigorous results 
on
erning 
haos in Lorenz equations are Hassard et

all [HHTZ℄ result for parameter values (s; r; q) = (10; 76; 9) and Mis
haikow and

Mrozek [MM1℄ result for (s; r; q) = (45; 54; 10). In these papers authors are able

to show with 
omputer assistan
e that some kind of symboli
 dynami
s is present,

but the existen
e of periodi
 points is not 
laimed. There exists also an analyti
al

result of Chen [Ch℄, who was able to establish that the Lorenz equations support

a horseshoe, for large r and s 
lose to

2q�1

3

. This is highly advantageous result.

But as the other results 
ited before this result 
annot be extended to the most

popular values (s; r; q) = (10; 28; 8=3).

In this paper we present the �rst proof that the Lorenz system with "
lassi
al"

(most popular) parameter values (s; r; q) = (10; 28; 8=3) has in�nitely many qual-

itatively distin
t periodi
 traje
tories (see se
. 3 for a pre
ise statement). This

is done by showing rigorously with 
omputer assistan
e that the se
ond iterate

of a suitably 
hosen Poin
ar�e return map has a "topologi
al horseshoe". In our

approa
h, whi
h is purely topologi
al, we do not use any estimates 
on
erning

derivatives of the Poin
ar�e map, whi
h are ne
essary to establish a sort of hyper-

boli
ity present in horseshoes [Mo℄. This is obviously a weakness of the method, as

we are unable to prove a sensitive dependen
e on initial 
onditions present in the

horseshoe. Paradoxi
ally, the topologi
al 
hara
ter of this method de
ides about

its strength, as assumptions of our topologi
al theorem are relatively easy to 
he
k

with 
omputer assistan
e, whi
h seems to be impossible for smooth methods with

nowaday 
omputers [SA℄.
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Our method is a variation of the method for proving 
haos in dynami
al systems

developed by the se
ond author in [Z97b℄ and [Z96b℄. This method was applied

previously to the R�ossler equations, the H�enon map and to the Chua's 
ir
uit [G℄.

In order to use this te
hnique to prove the existen
e of 
haos in Lorenz equations

some modi�
ations of the method were ne
essary. The method is based on the

�xed point index and is similar to the Mis
haikow and Mrozek method based on

the dis
rete Conley index [MM1℄, [MM2℄. On the topologi
al level the di�eren
es

between these methods are following:

� We repla
e the more general, but rather diÆ
ult 
on
ept of the dis
rete Con-

ley index, by the �xed point index, whi
h seems to be mu
h easier 
on
ept.

It is also parti
ularly well suited to study �xed and periodi
 points.

� We de�ne a 
lass of TS-maps (see se
. 1) for whi
h one 
an easily 
ompute

the �xed point indi
es of interest and we formulate theorem 1 about 
haoti


behavior for TS-map without any referen
e to the notion of the �xed point

index.

� If the TS-map is a homeomorphism (for example it is a Poin
ar�e map for

ODE's) then assumptions of our theorem 
an be 
he
ked only on the bound-

aries, whi
h has enormous impa
t on 
omputation time (see se
. 5).

Both the methods (the one used in this paper and the method of Mis
haikow and

Mrozek) involve some algebrai
 topology and at �rst sight seem to be more 
ompli-


ated than the method of Hassard et al. [HHTZ℄ whi
h is based on 
onne
tedness.

Also the amount of 
omputation for this last method is smaller. But we would

like to stress that this method is less general, as it depends 
onsiderably on di�er-

ential equations under investigations and 
annot be used to prove the existen
e of

periodi
 points.

The se
ond aim of our paper is to show limitations of existing `interval arithmeti
'

in the task of 
al
ulating in a reasonable time the image of `big sets' with rela-

tively poor a

ura
y. In the proof of 
haos the evaluation of the Poin
ar�e map is

ne
essary. This involves integration of the system equations. The main problem

en
ountered during integration of the dynami
al system in `interval arithmeti
' is

the `wrapping e�e
t' whi
h 
auses very qui
k growth of the set of initial 
onditions

for the next integration step. We over
ome this problem by estimating the growth

of error along the traje
tory in the Eu
lidean norm while the set of initial 
ondi-

tions for integration method is kept very small (in fa
t we use a point interval).

All the operations are performed in `interval arithmeti
' to obtain rigorous errors

for elementary operations.

1 TS-maps

The aim of this se
tion is to re
all the notion of TS-maps introdu
ed in [Z97a℄,

whi
h is spe
ial 
ase of window 
hains introdu
ed by R. Easton in [E75℄, [E89℄.
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By R, R

+

Z, N we will denote the sets of real numbers, nonnegative real numbers,

integers and natural numbers (in
luding zero) respe
tively. Let (X; �) be a metri


spa
e. Let Z � X . By int(Z), 
l(Z), bd(Z) we denote respe
tively the interior,

the 
losure and the boundary of the set Z.

Let f : X 7! X be a 
ontinuous map and N be a subset of X . By f

jN

we will

denote the map obtained by restri
tion of the domain of f to the set N . The

maximum invariant part of N (with respe
t to f) is de�ned by

Inv(N; f) =

\

i2Z

f

�i

jN

(N):

For the union of disjoint re
tangles P =

S

P

k

� R

2

, where P

k

= [a

k

; b

k

℄� [


k

; d

k

℄

we set

L(P ) :=

[

fa

k

g � [


k

; d

k

℄; (2)

R(P ) :=

[

fb

k

g � [


k

; d

k

℄; (3)

V(P ) := L(P ) [R(P ); (4)

H(P ) :=

[

([a

k

; b

k

℄� f


k

g [ [a

k

; b

k

℄� fd

k

g): (5)

So L(P ), R(P ), V(P ), H(P ) are unions of left verti
al, right verti
al, verti
al and

horizontal edges in P respe
tively.

In the remaining part of this se
tion we 
onsider maps on the plane R

2

.

Let us �x u; d 2 R, u > d and a sequen
e a

�1

= �1 < a

0

< a

1

< : : : a

2K�2

<

a

2K�1

< a

2K

=1, where a

i

2 R for i = 0; 1; : : : ; 2K � 1. Let

N

i

:= [a

2i

; a

2i+1

℄� [d; u℄; for i = 0; : : : ;K � 1; (6)

E

i

:= (a

2i�1

; a

2i

)� [d; u℄; for i = 0; : : : ;K; (7)

N := N

0

[N

1

[ : : : [N

K�1

; (8)

E := E

0

[E

1

[ : : : [E

K�1

[ E

K

: (9)

The sets E

i

; N

i

are 
ontained in the horizontal strip (�1;1) � [d; u℄ in the fol-

lowing order (we 
ompare x-
oordinates)

E

0

< N

0

< E

1

< N

1

< : : : < E

K�1

< N

K�1

< E

K

: (10)

Suppose further that for i = 0; 1; : : : ;K we have sets E

0

i

su
h that E

i

� E

0

i

,


l(E

0

i

) \ (H(N) n V(N)) = ; , 
lE

0

i

\ 
lE

0

j

= ; for i 6= j and that there exist


ontinuous homotopies h

i

: [0; 1℄�E

0

i

7! E

0

i

su
h that h

i

(0; p) = p, h

i

(1; p) 2 E

i

and

h

i

(t; p) = p for t 2 [0; 1℄, p 2 E

i

. This means that the set E

0

i


an be 
ontinuously

deformed to the set E

i

without any interse
tion with the setN . E

i

is a deformation

retra
t of E

0

i

. We set

E

0

:= E

0

0

[E

0

1

[ : : : E

0

K

:
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Figure 1: An example of TS-map. Sets N

0

; N

1

; N

2

and their images under f

De�nition 1. Let the sets E

i

; E

0

i

; N

i

be as above. Let D be an open set su
h

that N � D and a map f : D 7! R

2

be 
ontinuous. We say that f is TS-

map (topologi
al shift) (relatively to the sets N , E, E

0

) if there exist fun
tions

l; r : f0; 1; : : : ;K � 1g 7! f0; 1; : : : ;Kg su
h that the following 
onditions hold

f(L(N

i

)) � E

0

l(i)

; f(R(N

i

)) � E

0

r(i)

; (11)

f(N) � int(E

0

[N): (12)

Geometri
ally, the above 
onditions mean that the image of verti
al edges does

not interse
t the set N and the image of N is 
ontained in the set whi
h 
an

be 
ontinuously deformed to the horizontal strip without any interse
tion with

horizontal edges of N .

If for some j we have r(i) � j < l(i) or l(i) � j < r(i) then we will say that the

image of N

i


overs N

j

horizontally.

Figure 1 shows a s
hemati
 example of TS-map on three sets N

0

, N

1

, N

2

. The sets

E

0

i


oin
ide with E

i

. The 
orners of N

i

are denoted by numbers, their images by

numbers with primes. Corners 5; 6 are omitted be
ause they almost 
oin
ide with


orners 4; 3 respe
tively. It is easy to see that the image of N

0


overs horizontally

N

2

and both sets N

0

, N

1

are 
overed horizontally by the images of N

1

and N

2

.

We are looking for periodi
 points of the TS-map f . We will 
hara
terize them by

periodi
 in�nite sequen
es 
 = (


i

)

i2N

of symbols 0; 1; : : : ;K�1 with the property

f

i

(x) 2 N




i

for i 2 N.
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Let �

K

:= f0; 1; : : : ;K � 1g

Z

, �

+

K

:= f0; 1; : : : ;K � 1g

N

. �

K

, �

+

K

are topologi
al

spa
es with the Ti
honov topology. On �

K

, �

+

K

we have the shift map � given by

(�(
))

i

= 


i+1

:

Let A = [�

ij

℄ be a K �K-matrix, with nonnegative elements (�

ij

2 R

+

[ f0g for

i; j = 0; 1; : : : ;K � 1). We de�ne �

A

� �

K

and �

+

A

� �

+

K

by

�

A

:= f
 = (


i

)

i2Z

j �




i




i+1

> 0g; (13)

�

+

A

:= f
 = (


i

)

i2N

j �




i




i+1

> 0g: (14)

Obviously �

+

A

, �

A

are invariant under �.

Let f be a TS-map. To relate the dynami
s of f on Inv(N; f) with shift dynami
s

on �

+

K

we introdu
e the transition matrix of f denoted by A(f).

We de�ne A(f)

ij

, where i; j = 0; 1; : : : ;K � 1 by

A(f)

ij

:=

�

1; if E

l(i)

< N

j

< E

r(i)

or E

l(i)

> N

j

> E

r(i)

;

0; otherwise:

It easy easy to see that A(f)

i;j

6= 0, if N

j

lays between the images of verti
al edges

of N

i

or in other words if f(N

i

) 
overs N

j

horizontally (we deform the image by

the homotopies h

i

if ne
essary).

For i 2 N we de�ne the map �

i

: Inv(N; f) 7! f0; 1; : : : ;Kg given by �

i

(x) = j i�

f

i

(x) 2 N

j

. Now we de�ne the map � : Inv(N; f) 7! �

+

K

by �(x) := (�

i

(x))

i2N

.

The map � assigns to the point x the indi
es of sets N

i

whi
h its traje
tory goes

through. It is easy to see that we have

� Æ f = � Æ �: (15)

If f is a homeomorphism then the de�nition of �

i


an be extended to all integers

and in this 
ase the domain of � is �

K

.

Obviously the semi-
onjuga
y (15) alone is not a sign of 
ompli
ated dynami
s.

It may happen that the set �(Inv(N; f)) is �nite or even empty. The dynami
s is


ompli
ated if �(Inv(N; f)) is in�nite.

De�nition 2. Let 
 2 �

+

K

(
 2 �

K

). We will say that 
 is admissible for f in N

if there exists x




2 N su
h that f

i

(x




) 2 N




i

for i 2 N (Z). If 
 is periodi
 we

additionally require that x




is a periodi
 point with the same prin
ipal period as 
.

If Z � �

+

K

(Z � �

K

) we will say that Z is admissible for f in N if every sequen
e

in Z is admissible for f in N .

The following theorem, proved in [Z97a℄, gives the 
hara
terization of the set of

admissible sequen
es for TS-maps.
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Theorem 1. Let f be a TS-map. Then �

+

A(f)

� �(Inv(N; f)). The preimage of

any periodi
 sequen
e from �

+

A(f)


ontains periodi
 points of f . If we additionally

suppose that f is a homeomorphism then �

A(f)

� �(Inv(N; f)).

Results similar to the theorem above, but without the existen
e of periodi
 points,


an be found also in [MM2℄ and [E89℄.

2 TS-map stru
ture for the Lorenz system

In this se
tion we des
ribe an appli
ation of theorem 1 to the 
ase when the sets N

i

are non-disjoint. This is the situation en
ountered by us in the Lorenz equations

(see next se
tion).

Let us �x u; d 2 R, u > d and two sequen
es (a

0i

), (a

1i

) with elements a

ki

2

R[f�1;1g for i = �1; 0; 1; 2; 3; 4 and k = 0; 1, su
h that for �xed k the following


onditions hold a

k;�1

= �1 < a

k;0

< a

k;1

< a

k;2

< a

k;3

< a

k;4

= 1. Let us

de�ne

N

ki

:= [a

k;2i

; a

k;2i+1

℄� [d; u℄; for i = 0; 1; (16)

E

ki

:= (a

k;2i�1

; a

k;2i

)� [d; u℄; for i = 0; 1; 2; (17)

N

k

:= N

k0

[N

k1

; for k = 0; 1; (18)

N := N

0

[N

1

; (19)

E

k

:= E

k0

[ E

k1

[E

k2

; (20)

E := E

0

[ E

1

: (21)

Obviously for �xed k the sets N

ki

are disjoint, but it may happen that for example

N

0i

\N

1i

6= ;.

Let D be an open set, N � D and f : D 7! R

2

be a 
ontinuous map. Suppose

that the following 
onditions hold (
ompare Fig. 3 in the next se
tion)

f(N) � int(E [N); (22)

f(L(N

00

)) � E

11

; f(R(N

00

)) � E

12

; (23)

f(L(N

01

)) � E

10

; f(R(N

01

)) � E

11

; (24)

f(L(N

10

)) � E

00

; f(R(N

10

)) � E

02

; (25)

f(L(N

11

)) � E

00

; f(R(N

11

)) � E

02

: (26)

It should be noted that in the above 
onditions assumptions 
on
erning the images

of N

ki

are expressed using the sets E

1�k;j

.

Let M � 0 be a real number. We de�ne

~

N

0i

:= N

0i

; (27)
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~

E

0i

:= E

0i

; (28)

~

N

1i

:= N

1i

+ (M; 0); (29)

~

E

1i

:= E

1i

+ (M; 0); (30)

~

N

k

:=

~

N

k0

[

~

N

k1

; (31)

~

N :=

~

N

0

[

~

N

1

: (32)

We de�ne

~

f :

~

N 7! R

2

by

~

f(x) :=

�

f(x) + (M; 0) for x 2

~

N

0

,

f(x)� (M; 0) for x 2

~

N

1

.

(33)

From 
ompa
tness of N and 
ontinuity of f it follows that there exists M su
h

that

~

N

0

\

~

N

1

= ;; (34)

~

f(

~

N

k

) \

~

N

k

= ;; for k = 0; 1. (35)

We �x su
h M . Hen
e from 
onditions (22{26) we get

~

f(

~

N) � int(

~

E [

~

N); (36)

~

f(L(

~

N

0;0

)) �

~

E

1;1

;

~

f(R(

~

N

0;0

)) �

~

E

1;2

; (37)

~

f(L(

~

N

0;1

)) �

~

E

1;0

\

~

E

0;2

;

~

f(R(

~

N

0;1

)) �

~

E

1;1

; (38)

~

f(L(

~

N

1;0

)) �

~

E

0;0

;

~

f(R(

~

N

1;0

)) �

~

E

0;2

\

~

E

1;0

; (39)

~

f(L(

~

N

1;1

)) �

~

E

0;0

;

~

f(R(

~

N

1;1

)) �

~

E

0;2

\

~

E

1;0

: (40)

We will treat the indi
es of the sets

~

N

ki

as binary expansions so 00 
orresponds to

0, 01 to 1 , 10 to 2 and 11 to 3. With this 
onvention we see that

~

f is a TS-map

with a transition matrix A(

~

f) given by

A(

~

f) :=

2

6

6

4

0; 0; 1; 1

0; 0; 1; 1

0; 1; 0; 0

1; 0; 0; 0

3

7

7

5

:

From theorem 1 applied to the map

~

f it follows that the set �

+

A(

~

f)

is admissible

for the map

~

f . Let us observe that

A

2

(

~

f) :=

2

6

6

4

1; 1; 0; 0

1; 1; 0; 0

0; 0; 1; 1

0; 0; 1; 1

3

7

7

5

:

The following lemma follows from the form of the square of transition matrix of

~

f

and the 
ondition (35).
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Lemma 2. The set f00; 01g

N

[ f10; 11g

N

is admissible for

~

f

2

.

There is an obvious 
onne
tion between f

2

and

~

f

2

. From the 
onstru
tion of

~

f it

follows immediately that

x 2 N

0

; f(x) 2 N

1

i� x 2

~

N

0

;

~

f(x) 2

~

N

1

; (41)

f

2

(x) =

~

f

2

(x); if x 2 N

0

; f(x) 2 N

1

: (42)

Similar statements with obvious modi�
ations hold when we ex
hange indi
es 0

and 1 in the above 
onditions.

From lemma 2 and 
onditions (41), (42) we obtain

Theorem 3. Let f and sets N

ki

, E

ki

be as above and 
onditions (36{40) are

satis�ed. Then the set f00; 01g

N

= �

+

2

is admissible for f

2

in N

0

= (N

00

[N

01

).

3 Chaos in the Lorenz equations

The Lorenz equations are given by [L℄

_x = s(y � x);

_y = rx� y � xz; (43)

_z = xy � qz;

where s = 10, r = 28, q = 8=3.

We 
onsider a transversal plane � = f(x; y; z) 2 R

3

: z = r � 1g. This a standard


hoi
e for the Poin
ar�e se
tion. Let P be a Poin
ar�e map generated on the plane

�, i.e., for x 2 � by P(x) we denote the point at whi
h the traje
tory based at x

interse
ts � for the �rst time in the spe
i�ed dire
tion.

We have found for P the stru
ture des
ribed in the previous se
tion. To express

this stru
ture we introdu
e the new rotated 
oordinates on the plane z = r � 1

�x := x 
os � � y sin �; (44)

�y := x sin � + y 
os �; (45)

where the angle � = 70

Æ

(� = 2�(70=360) in radians). The line �x = 0 is very


lose to the interse
tion of the stable manifold of the origin (0; 0; 0) with the plane

z = r � 1 in the region of interest.

Let us set a

00

= �1:6, a

01

= �0:4, a

02

= 0:4, a

03

= 1:6, a

10

= �3:3, a

11

= �0:9,

a

12

= 0:9, a

13

= 3:3, d = �6, u = 6. We de�ne sets N

ki

, E

ki

as in the previous

se
tion. Sets N

ki

are shown in the Fig. 2. Despite of the 
hange of 
oordinates

(44,45) we will use the notion of the left, right, verti
al and horizontal edges with

respe
t to the old 
oordinates in order to be 
onsistent with the formulation of

theorems in se
tions 1 and 2.



Chaos in the Lorenz equations 10
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-4

0
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y

N00
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N11

Figure 2: Re
tangles N

00

, N

01

, N

10

and N

11

on the transversal plane. N

00

and

N

01

are printed with solid lines, while N

10

and N

11

with dashed ones

In 
omputer simulations we have integrated equations (43) using the fourth-order

Runge-Kutta algorithm with the time step h = 0:005. In Fig. 3 we show the

images of borders of N

ki

under Poin
ar�e map obtained by numeri
al integration.

The image ofN

00


oversN

11

horizontally and similarly the image ofN

01


oversN

10

(
ompare Fig. 3a). Both images of N

10

and N

11


overs N

00

[N

01

horizontally (see

Fig. 3b). These results indi
ate that 
omplex behavior of the system and existen
e

of in�nitely many periodi
 orbits is possible. The next step is to prove stri
tly this

observation. In order to perform this task we have developed a 
omputer program

using pro
edures for interval 
omputations from the BIAS and PROFIL pa
kages

[K℄.

With 
omputer assistan
e we have proved the following lemma.

Lemma 4. The Poin
are map P is well de�ned and 
ontinuous on N . The 
on-

ditions (22{26) hold for P.

Proof of this lemma will be given in the next se
tion. Combining the above lemma

and theorem 3 we obtain main theorem of this paper.

Theorem 5. For all parameter values in a suÆ
iently small neighborhood of

(s; r; q) = (10; 28; 8=3) there exists a transversal se
tion I � fz = 27g su
h that

the Poin
ar�e map P indu
ed by (43) is well de�ned and 
ontinuous on I. There

exists 
ontinuous surje
tive map � : Inv(I;P

2

)! �

2

, su
h that

� ÆP

2

= � Æ �:

The preimage of any periodi
 sequen
e from �

2


ontains periodi
 points of P

2

.
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(a) (b)
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Figure 3: Images of borders of N

00

, N

01

, N

10

and N

11

on the transversal plane

| 
omputer simulations, (a) images of edges of N

00

and N

01

, one 
an 
learly see

that image of N

00


overs N

11

horizontally and symmetri
ally the image of N

01


overs N

10

, (b) images of edges of N

10

and N

11

, both images 
overs N

00

and N

01

horizontally

Proof. From 
ontinuous dependen
e of the solutions of ODE's on parameters it

follows easily that lemma 4 holds in some neighborhood U of (s; r; q) = (10; 28; 8=3)

in the parameter spa
e. We �x U and we 
onsider the Poin
ar�e map P generated

by (43) for parameters values from U .

We set I := Inv(N

00

[N

01

;P

2

). We de�ne the map � : I ! �

2

by

�

i

(x) = 0; if P

2i

(x) 2 N

00

; (46)

�

i

(x) = 1; if P

2i

(x) 2 N

01

: (47)

From theorem 3 we obtain that every periodi
 sequen
e from �

2

is admissible

for P in N

00

[ N

01

. Now from density of the periodi
 sequen
es in �

2

we get

�(I) = �

2

.

4 Details of 
omputer 
al
ulations

In our 
omputer program we have used the pro
edures for interval 
omputations

from BIAS and PROFIL pa
kages [K℄ prepared by Olaf Kn�uppel from Te
hni
al

University Hamburg-Harburg.

In this se
tion we present the detailed des
ription of the pro
edure for 
omputation

of the image of a re
tangle under Poin
ar�e map and then we will des
ribe the proof

of lemma 4.

The whole 
omputer program used during the 
omputer-assisted proof 
an be

found at:

<http://galaxy.u
i.agh.edu.pl/�galias/int.html>.
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4.1 One integration step

First we des
ribe the pro
edure NextPointExa
tTaylor4 for 
omputation of the

image of an Eu
lidean ball B(P

0

; "

0

) under dynami
al system after time h, where

P

0

is a three-dimensional interval ve
tor and "

0

is a positive real value. The

pro
edure �nds a three-dimensional interval ve
tor P

2

and a real value "

2

su
h that

the image of the ball B(P

0

; "

0

) after time h is en
losed within the ball B(P

2

; "

2

)

'(B(P

0

; "

0

); h) � B(P

2

; "

2

): (48)

For that task the fourth-order Taylor integration formula and the logarithmi
 norm

are used. They are des
ribed in the following subse
tions.

4.1.1 Pro
edure for 
omputation of '(P; [0; h℄)

Before we present the implementation of the Taylor integration formula and the


omputation of logarithmi
 norm let us des
ribe the pro
edure GetTraj(P; P

T

; h),

whi
h is used several times in the program. Its 
ode is given in the Appendix.

This pro
edure 
omputes the three-dimensional interval P

T


ontaining all the tra-

je
tories starting from the three-dimensional interval ve
tor P after time t 2 [0; h℄.

The pro
edure is based on the following lemma:

Lemma 6. Let y(0) be a set of initial 
onditions. Let Y be a 
onvex subset of

R

3

, " be a positive real number and let us de�ne Y

"

:= B(Y; "). By Hull(A) we will

denote the smallest 
losed ball in the max-norm 
ontaining the set A. Let

X := y(0) + [0; h℄ � f(y(0)) +

[0; h℄

2

2

Hull(f

0

(Y

"

)f(Y

"

));

where all operations on the right side are of set type, for example f(Y

"

) = fx : x =

f(y), for some y 2 Y

"

g and [0; h℄ � f(y(0)) = ft � x : t 2 [0; h℄;x 2 f(y(0))g.

If X � Y then y([0; h℄) := '(y(0); [0; h℄) � X.

Proof. Let t = inffs:y(s) 62 Xg. We will show that t � h. If t < h then there exists

Æ > 0 su
h that y(s) 2 Y

"

for t � s � t+Æ < h. From the �rst order Taylor formula

for all s 2 [t; t+Æ℄ we have for i = 1; 2; 3 y

i

(s) = y

i

(0)+sf

i

(y(0))+

1

2

s

2

(f

0

(y)f(y))

i

,

where y 2 Y

"

depends on s and i. It follows that y(s) 2 X for all s 2 [t; t + Æ℄.

Hen
e y(s) 2 X for all s 2 [0; t + Æ℄ and inffs:y(s) 62 Xg � t + Æ > t whi
h is a


ontradi
tion.

In the pro
edure GetTraj(P; P

T

; h) we �rst 
hoose Y . Then using the �rst order

Taylor formula (y(t + h) = y + hy

0

(t) +

1

2

h

2

y

00

(t + �h)) we 
ompute image P

T

of P after time [0; h℄, where y

00

is evaluated over the set Y

"

� Y . If the image

is en
losed in Y then P

T

is returned. Otherwise we 
hoose a bigger set Y and

repeat the 
omputations. From the previous lemma it follows that the following

proposition is true.

Proposition 1. If GetTraj(P; P

T

; h) returns TRUE then '(P; [0; h℄) � P

T

.
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4.1.2 Taylor integration method

For integration of the equation (43) the fourth-order Taylor formula has been used.

We have also tested the fourth-order Runge-Kutta formula but the 
omputation

time was longer due to greater number of 
oeÆ
ients in the exa
t formula for

the error term. Let us denote by y(t) = (y

1

(t); y

2

(t); y

3

(t))

T

the solution of the

equation (43). Let us re
all that the standard fourth-order Taylor integration

method is based on the expansion

y

i

(t+h) = y

i

(t)+hy

0

i

(t)+

1

2

h

2

y

00

i

(t)+

1

6

h

3

y

000

i

(t)+

1

24

h

4

y

(4)

i

(t)+

1

120

h

5

y

(5)

i

(t+�

i

h);

(49)

where i = 1; 2; 3 and �

i

2 [0; 1℄ for i = 1; 2; 3. Using the equation y

0

= f(y) we


an easily 
ompute y

(k)

in terms of f , f

0

and f

00

. For the Lorenz system

f

0

(y) � h =

0

�

�S S 0

R� y

3

�1 �y

1

y

2

y

1

�Q

1

A

0

�

h

1

h

2

h

3

1

A

; (50)

where y = (y

1

; y

2

; y

3

)

T

and h = (h

1

; h

2

; h

3

)

T

. The se
ond derivative f

00

(y) does

not depend on y and 
an be 
omputed as

f

00

(y) � (h

1

;h

2

) =

0

�

0

�h

11

h

32

� h

31

h

12

h

11

h

22

+ h

21

h

12

1

A

; (51)

where h

1

= (h

11

; h

21

; h

31

) and h

2

= (h

12

; h

22

; h

32

). As the left hand f(y) of the

equation (43) does not 
ontain terms of order greater than two it is 
lear that

f

(k)

� 0 for k > 2. f , f

0

and f

00

are 
omputed within the program using pro
edures

LeftSide, FPrim and FBis given in the Appendix. FBis2 is the FBis pro
edure

for the 
ase of two equal arguments.

Using the 
hain rule of di�erentiation we 
an obtain formulas for y

(k)

. In the

following we write f , f

0

and f

00

instead of f(y(t)), f

0

(y(t)) and f

00

(y(t)) respe
tively.

y

0

(t) = f(y(t)) = f ;

y

00

(t) =

d

dt

(f(y(t))) =

df

dt

(y(t))

dy

dt

(t) = f

0

(y(t))f(y(t)) = f

0

f ;

y

000

(t) = f

00

� + f

0

f

0

f ;

y

(4)

(t) = 3f

00

f

0

� + f

0

f

00

� + f

0

f

0

f

0

f ;

y

(5)

(t) = 4f

00

�

00

� + 4f

00

f

0

f

0

� + 3f

00

f

0

�

0

f + 3f

0

f

00

�

0

f + f

0

f

0

f

00

� + f

0

f

0

f

0

f

0

f :

The formula we use for 
omputation of y(t+ h) reads

y(t+h) = y(t)+hf+

h

2

2

f

0

f+

h

3

6

(f

00

�+f

0

f

0

f)+

h

4

24

(3f

00

f

0

�+f

0

f

00

�+f

0

f

0

f

0

f)+e(y; h);

(52)
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where f , f

0

and f

00

stands for f(y(t)), f

0

(y(t)) and f

00

(y(t)). The error e(y; h)

introdu
ed by omitting the higher order terms is equal to

e(y; h) =

h

5

120

(4f

00

�

00

�+4f

00

f

0

f

0

�+3f

00

f

0

�

0

f+3f

0

f

00

�

0

f+f

0

f

0

f

00

�+f

0

f

0

f

0

f

0

f); (53)

where this time f , f

0

and f

00

are 
omputed at points y

i

(t+ �

i

h) with �

i

2 [0; 1℄.

4.1.3 Logarithmi
 norm

The pro
edure LogNorm(P;L) 
omputes the upper bound L of logarithmi
 norm

of the matrix f

0

(y) over the three-dimensional interval ve
tor P . Let us re
all that

the Logarithmi
 norm [HNW℄ of matrix Q is de�ned by

m(Q) := lim

h!0;h>0

jjI + hQjj � 1

h

: (54)

For the Eu
lidean norm on the right side of the above equation the logarithmi


norm of Q 
an be obtained using the formula

m(Q) = largest eigenvalue of the matrix

1

2

(Q

T

+Q): (55)

In the pro
edure LogNorm(P,L) we �rst 
ompute the 
oeÆ
ients of the 
hara
ter-

isti
 equation of the matrix (f

0

(P ) + f

0

(P )

T

)=2. Then using the Cardano formula

we �nd roots of the 
hara
teristi
 equation and we 
hoose the largest one (the

roots are real as the matrix (f

0

(P ) + f

0

(P )

T

)=2 is symmetri
). If for some reason

this 
omputation is not possible then LogNorm returns FALSE. If the pro
edure

returns TRUE then L is the upper bound of the logarithmi
 norm over the set P .

4.1.4 Pro
edure NextPointExa
tTaylor4

The pro
edure NextPointExa
tTaylor4(P

0

; "

0

; P

2

; "

2

) 
omputes the image of a

ball B(P

0

; "

0

) under dynami
al system after time h. For given 3D interval ve
tor

P

0

and real value "

0

the pro
edure �nds a 3D interval ve
tor P

2

and a real value

"

2

su
h that the image of the ball B(P

0

; "

0

) after time h is en
losed within the ball

B(P

2

; "

2

)

'(B(P

0

; "

0

); h) � B(P

2

; "

2

): (56)

If the pro
edure is not 
apable to 
ompute the image it returns FALSE. In the

opposite 
ase it 
omputes P

2

and "

2

and returns TRUE. The pro
edure 
onsists of

two parts.

In the �rst part the image of P

0

after time h is 
omputed using the fourth-order

Taylor integration formula with exa
t 
omputation of the error term. We �rst


al
ulate P

2

a

ording to equation (52) without the last term e(y; h). During this


omputation f , f

0

and f

00

are 
omputed over the set P

0

. Then using the pro
edure
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GetTraj(P

0

; h) we �nd the set Y , 
ontaining traje
tories starting from P

0

after

time t 2 [0; h℄:

'(P

0

; [0; h℄) � Y:

Then we 
ompute e(P

0

; h) using equation (53), where f , f

0

and f

00

are 
omputed

over Y . Finally we modify P

2

by adding the error term and we obtain a three-

dimensional interval ve
tor P

2


ontaining the image of P

0

after time h, i.e.,

'(P

0

; h) � P

2

:

In the se
ond part of the pro
edure we 
ompute the 
hange of the radius of the

Eu
lidean ball during evolution after time h. This 
omputation is based on the

following theorem.

Theorem 7 ([HNW℄). Suppose that v(t) and w(t) are solutions of the system of

di�erential equations y

0

= f(y) satisfying jjv(t

0

)�w(t

0

)jj � ". Let us also assume

that the logarithmi
 norm m(f

0

(y)) � L on the 
onvex set 
ontaining traje
tories

fv(t): t 2 [t

0

; t

1

℄g and fw(t): t 2 [t

0

; t

1

℄g. Then for t 2 [t

0

; t

1

℄ we have the estimate

jjw(t) � v(t)jj � "e

L(t�t

0

)

: (57)

In order to use the above theorem we have to 
ompute the logarithmi
 norm over

the 
onvex set 
ontaining all the traje
tories starting from B(P

0

; "

0

) after time

[0; h℄. In order to �nd su
h a 
onvex set we 
all the pro
edure GetTraj with

the parameters B(P

0

; "

0

) and h obtaining Y � '(B(P

0

; "

0

); h) (as Y is an interval

ve
tor it is obviously 
onvex). Then we 
all the pro
edure LogNorm(Y; L) obtaining

the upper bound L of the logarithmi
 norm of the matrix f

0

(y) over the set Y and

�nally we in
rease the size of the ball a

ording to the following formula:

"

2

= "

0

e

Lh

: (58)

From the 
onsiderations presented above it follows that

Proposition 2. If the pro
edure NextPointExa
tTaylor4(P

0

; "

0

; P

2

; "

2

) returns

TRUE then

'(B(P

0

; "

0

); h) � B(P

2

; "

2

):

In order to minimize wrapping e�e
t the pro
edure NextPointExa
tTaylor4 is


alled with parameter P

0

being a three-dimensional point interval.

Although P

0

is a point interval P

2

is an interval ve
tor with nonzero diameter

due to the existen
e of the error term in the integration formula and 
omputation

errors. Before 
alling the pro
edure NextPointExa
tTaylor4 again the interval

P

2

is shrinked to the point and "

2

is in
reased appropriately. In this way we do

not 
ontrol the size of error by the interval arithmeti
 methods. Instead we use

expli
itly the Lips
hitz 
onstant obtained using the logarithmi
 Eu
lidean norm.

Su
h a
tion redu
es the wrapping e�e
t, whi
h would 
ause very qui
k growth of


omputational errors in 
ase of using interval arithmeti
 alone.
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4.1.5 Redu
tion of wrapping e�e
t with logarithmi
 norm

We have also tested other possibilities of 
omputation of the image of an interval

ve
tor under dynami
al system.

The �rst possibility tested was the one without logarithmi
 norm. This solution

appeared to be mu
h worse. Due to the wrapping e�e
t the diameter of the interval

grows mu
h qui
ker than in the 
ase when we use the logarithmi
 norm.

In order to show how big the di�eren
e is let us denote by d

1

the diameter of the

re
tangle whi
h image under Poin
ar�e map we 
ompute and by d

2

the diameter

of the re
tangle returned by the pro
edure for evaluation of the Poin
ar�e map.

When we used logarithmi
 norm the quotient d

2

=d

1

was between 70 and 490 for

d

1

= 0:005, while in the se
ond 
ase it was greater then 9�10

9

for d

1

= 5�10

�9

(for

greater d

1

we were even not able to evaluate the Poin
ar�e map). With logarithmi


norm the 
omputation time was approximately 7 hours. It was estimated to be

more than 10

7

times longer without logarithmi
 norm.

We have also tried to use the logarithmi
 norm based on maximum norm instead

of Eu
lidean norm. In this 
ase the quotient d

2

=d

1

was approximately 1000 times

greater than in the 
ase of logarithmi
 norm based on Eu
lidean norm.

Computation method d

2

=d

1

Computation time

logarithmi
 norm based on Eu
lidean norm 70� 490 7h

logarithmi
 norm based on maximum norm > 10

5

> 10

4

h

without logarithmi
 norm > 10

9

> 10

8

h

Table 1: Comparison of 
omputation time for di�erent methods

These results show that without logarithmi
 norm based on Eu
lidean norm we

would not be able to prove the assumptions about Poin
ar�e map (
ompare also

table 1).

4.2 Pro
edure for the Poin
ar�e map

On
e we have the pro
edure for 
omputation of one integration step we 
an 
on-

stru
t pro
edure for the whole Poin
ar�e map P. The pro
edure Poin
Fun 
om-

putes image of the two-dimensional interval P

start


ontained in the transversal

plane under Poin
ar�e map. It returns a two-dimensional interval P

end

su
h that

P(P

start

) � P

end

:

During the pro
edure we perform subsequent integration steps 
alling pro
edure

NextPointExa
tTaylor4 obtaining balls B(P

n

; "

n

) 
ontaining images '(P

start

; nh)

of the initial re
tangle after h, 2h,. . . . Initially we assign P

start

to P

0

and set

"

0

= 0 (hen
e B(P

0

; "

0

) = P

start

). Before every integration step we shrink the

three-dimensional interval ve
tor P

n

to the point interval ve
tor and in
rease "

n
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appropriately. This task is performed by the pro
edure De
PIn
Epsilon (see

Appendix), whi
h �nds a point interval ve
tor P

n

and a real "

n

su
h that

B(P

n;old

; "

n;old

) � B(P

n

; "

n

):

This a
tion is ne
essary in order to avoid the wrapping e�e
t.

The result of integration is a sequen
e of pairs P

n

; "

n

ful�lling 
onditions

'(B(P

n

; "

n

); h) � B(P

n+1

; "

n+1

); P

start

= B(P

0

; "

0

):

A traje
tory of a point in N

00

[N

10

interse
ts the transversal plane twi
e before

we 
an evaluate the Poin
ar�e map. The �rst interse
tion is in a di�erent dire
tion.

During the pro
edure the position of the traje
tory is 
onstantly monitored. As

the image of the initial re
tangle is within the ball B(P

n

; "

n

) an interse
tion is

not �nished until the whole ball lies on the proper side of the transversal plane

fz = r�1g. From the beginning of the pro
edure we 
he
k for the �rst interse
tion.

If B(P

n

; "

n

) � f(x; y; z): z > r � 1g the boolean variable FirstSe
tion is set to

TRUE, whi
h means that the �rst interse
tion has already been �nished. Then we

sear
h for the beginning of the se
ond se
tion. We look for the smallest n su
h

that B(P

n

; ") \ f(x; y; z): z < r � 1g 6= ;. At this moment we start to 
ompute

the interval ve
tor PPoin
Full 
ontaining the image of the initial re
tangle under

Poin
ar�e map. We assign it to be PPoin
Full = P

n�1

. In every iteration the

three-dimensional interval PPoin
Full is in
reased, it be
omes a 
onvex hull of

the previous value of PPoin
Full and the set '(B(P

n�1

; "

n�1

); [0; h℄). Integration

is 
ontinued until the se
ond interse
tion with the transversal plane is �nished.

This 
orresponds to the �rst integration step for whi
h traje
tory lies 
ompletely

after transversal plane (B(P

n

; "

n

) � fz < r � 1g).

The image of the initial re
tangle under Poin
ar�emap is 
ontained in the proje
tion

of PPoin
Full to the transversal plane.

In the 
ourse of the pro
edure we 
onstantly 
he
k the transversality 
ondition in

order to ensure that the traje
tory does not interse
t the transversal plane more

than twi
e before the image under Poin
ar�e map is evaluated and that interse
-

tions with transversal plane are really transversal. In fa
t it should be 
he
ked

only three times. First time at the beginning of the pro
edure to ensure that

the traje
tory enters the half-spa
e fz < r � 1g (the 
ondition is z

0

(P

start

) < 0).

The se
ond time it should be 
he
ked during the �rst interse
tion: for ea
h n

su
h that '(B(P

n

; "

n

); [0; h℄) \ f(x; y; z): z = r � 1g 6= ; one should 
he
k if

z

0

('(B(P

n

; "

n

); [0; h℄)) > 0. The third time it should be 
he
ked during the se
ond

interse
tion. This time we should 
he
k if z

0

('(B(P

n

; "

n

); [0; h℄)) < 0. In order

to simplify the pro
edure and to shorten the 
omputation time we perform the

transversality 
he
k in the pro
edure NextPointExa
tTaylor4. For every n su
h

that

'(B(P

n

; "

n

); [0; h℄) \ f(x; y; z): z = r � 1g 6= ;

we 
he
k whether

z

0

('(B(P

n

; "

n

); [0; h℄)) 6= 0:
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If this 
ondition does not hold then NextPointExa
tTaylor4 returns FALSE. From

the dis
ussion presented above it follows that

Proposition 3. If the pro
edure Poin
Fun(P

start

; P

end

) returns TRUE then

P(P

start

) � P

end

:

4.3 Computer assisted proof

Using the pro
edure Poin
Fun we have performed a 
omputer-assisted proof of

the following theorem.

Theorem 8. For all parameter values in a suÆ
iently small neighborhood of

(S;R;Q) = (10; 28; 8=3)

1. there exists a 
ontinuous Poin
ar�e map de�ned on N

00

[N

10

,

2. images of `horizontal' edges H(N

00

[N

10

) of N

00

and N

10

lie in the interior

of N [ E i.e.,

� P(H(N

00

[N

10

)) � int(N [E),

3. P(N

00

) 
overs N

11

horizontally and P(N

10

) 
overs N

00

[N

10

horizontally,

i.e., images of `verti
al' edges of N

00

and N

10

ful�ll the following 
onditions

� P(L(N

00

)) lies on the left side of N

11

i.e., P(L(N

00

)) � E

11

,

� P(R(N

00

)) lies on the right side of N

11

i.e., P(R(N

00

)) � E

12

,

� P(L(N

10

)) lies on the left side of N

00

i.e., P(L(N

10

)) � E

00

,

� P(R(N

10

)) lies on the right side of N

01

i.e., P(R(N

10

)) � E

02

.

Proof. During the proof we have used the pro
edure Poin
Fun for evaluation of

the Poin
ar�e map.

1. In the �rst step the set N

00

[ N

10

was 
overed by 56970 re
tangles. We


omputed images of these re
tangles under Poin
ar�e map proving in this

way the existen
e of 
ontinuous Poin
ar�e map.

2. `Horizontal' edges of N

00

[ N

10

were 
overed by 70 re
tangles ea
h. We

proved that images of all of these re
tangles lie within the strip int(N [E).

In Fig. 4.a one 
an see the re
tangles 
overing the bottom horizontal edge

of N

00

[N

10

and the re
tangles 
ontaining their images under Poin
ar�e map


omputed with the pro
edure Poin
Fun.
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(a) (b)
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Figure 4: Images of edges of N

ij

under Poin
ar�e map | exa
t 
omputations,

(a) 70 re
tangles 
overing the bottom verti
al edge of N

00

[N

10

and their images


omputed with the pro
edure Poin
Fun ( it has been 
he
ked that the output

re
tangles lie in int(N [ E), (b) 320 re
tangles 
overing L(N

10

) and their images


omputed with the pro
edure Poin
Fun (it has been 
he
ked that the output

re
tangles lie in the set E

02

)

3. `Verti
al' edges L(N

00

), R(N

00

), L(N

10

) and R(N

10

) were 
overed by 351,

7744, 320 and 1177 re
tangles respe
tively. For ea
h of these re
tangles the

pro
edure Poin
Fun was 
alled. We proved that images of these re
tangles

are in
luded within appropriate subsets of E [ N . An example of 
overing

of an horizontal edge is shown in Fig. 4.b. In this �gure one the 
overing of

L(N

10

) with re
tangles and images of these re
tangles under Poin
ar�e map


omputed with the pro
edure Poin
Fun are shown. One 
an see that output

re
tangles lie in E

02

.

In the �rst part of the proof we have used the time step h = 0:01, while in the

se
ond and third parts we have used h = 0:003. In the �rst part we have used

greater time step as we were not interested in the size of the re
tangles returned

by the pro
edure and hen
e we 
ould a

ept greater errors. The time interval over

whi
h we had to integrate the equations to evaluate the Poin
ar�e map varied from

0:67 to 0:94 for di�erent points within N

00

[ N

10

. This 
orresponds to less then

320 integration steps for the evaluation of the Poin
ar�e map when using the time

step equal to 0:003. The ratio of the size of the output re
tangle to the size of the

initial re
tangle on whi
h the Poin
ar�e map is evaluated depends on the position

of the initial re
tangle and varies from 27 to 530.

All the 
omputations were performed using the double pre
ision | this is the

pre
ision implemented in the BIAS and PROFIL pa
kages. We believe however
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that the a

ura
y does not have mu
h in
uen
e on the performan
e of the method.

We think that for smaller a

ura
y (single pre
ision or even less) it would also be

possible to 
arry out the proof. In this 
ase we would have to divide the sets under


onsideration into smaller parts. This would in
rease the 
omputation time.

The above proof was performed on the Sun Ultra 1 
omputer, with 167 MHz


lo
k. The program was 
ompiled with gnu C++ 
ompiler. It took approximately

7 hours to 
omplete the proof.

The above theorem is not stri
tly equivalent to Lemma 4. Instead of proving the


ondition P(N

00

[N

10

) � int(N [E) we only proved this 
ondition for the border,

namely P(bd(N

00

[ N

10

)) � int(N [ E) with an additional 
ondition that the

Poin
ar�e map P is de�ned on the whole N

00

[N

10

. From that one 
an prove that


ondition P(N

00

[ N

10

) � int(N [ E) holds (
ompare proof of lemma 4 below).

Su
h a pro
eeding redu
es the 
omputational time 
onsiderably. When we 
he
k

only the existen
e of the Poin
ar�e map we do not have to worry about the size

of the images of re
tangles under Poin
ar�e map. Hen
e we 
an 
hoose bigger

re
tangles 
overing N

00

[N

10

. During the proof of the �rst part of theorem 8 we

needed 56970 re
tangles. If we would 
he
k the stronger 
ondition we would need

approximately 10 times more re
tangles, whi
h would in
rease the 
omputation

time.

Proof of lemma 4. Due to symmetry of the problem from theorem 8 it follows that

the Poin
ar�e map P is well de�ned and 
ontinuous on N and 
onditions (23{26)

are satis�ed. It remains to show that from

P(bd(N

ki

)) � int(N [ E); (59)

for k; i = 0; 1 the 
ondition (22) follows.

Let us de�ne W := int(N [ E). The set W is the horizontal strip i.e. W =

(�1;1) � (d; u). From the general theory of di�erential equations it follows

that the Poin
ar�e map P is a homeomorphism onto the image. From the Jordan-

Brouwer Theorem [Gr, Th. 18.6, 18.7, 18.8℄ the set P(intN

ki

) is open and

bd(P(intN

ki

)) = P(bd(N

ki

)): (60)

Now suppose that for some k, i the set P(N

ki

) is not 
ontained in W . From (59)

and de�nition of W it follows that there exists x 2 int(N

ki

) su
h that P(x)) =2 W .

Let P(x) = (x; y). We may assume that y � u (i.e., P(x) is above the strip W ).

Now 
onsider the half-ray H = fP(x) + (0; t); t 2 R

+

g.

Obviously H \ P(intN

ki

) 6= ; and H is unbounded. So H is not 
ontained in

P(intN

i

) and from 
onne
tedness of H and (60) it follows that

H \P(bd(N

ki

)) 6= ;: (61)

From (59) and (61) it follows that H \W 6= ;. But by 
onstru
tion H \W = ;.

Hen
e we get a 
ontradi
tion. Thus (22) holds.
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5 Dis
ussion of the relevan
e of the method in the


omputer assisted proofs

In the previous se
tion we have proved the existen
e of symboli
 dynami
s for the

se
ond iterate of the Poin
are map P by rigorous numeri
al 
al
ulation of P, but

not the se
ond iterate. Another method to obtain this result would be to 
al
ulate

P

2

and then to apply the theorem 1 dire
tly. Both approa
hes to this proof look

almost equivalent, but the se
ond one is mu
h more time-
onsuming. We want

now to explain this in detail.

Method 1. We have to 
al
ulate P on the sets N

00

, N

01

, N

10

, N

11

with error less

then �

1

.

Method 2. We have to 
al
ulate P

2

on the sets N

00

, N

01

only with error less then

�

2

.

Below we de�ne some quantities for both methods, we will index them by m = 1; 2

for the method 1 and 2 respe
tively.

To 
al
ulate the image of the edges of N

ki

or the image of the entire set N

ki

we


over it by the �nite number of segments or re
tangles with the size Æ

m

given

by Æ

m

= �

m

=L

m

, where L

m

is the Lips
hitz 
onstant for the map P

m

. In the

real algorithm we 
al
ulate the Lips
hitz 
onstants lo
ally, but for our heuristi


dis
ussion we will assume that L

m

is 
onstant. The number of re
tangles p

m


overing edges of N

ki

is given by p

m

= d

m

=Æ

m

= d

m

L

m

=�

m

, where d

m

is the

total length of edges of N

ki

required in the method (for m = 1 the domain of


al
ulations is bigger).

Now let t

m

be a pro
essor time required for the 
al
ulation of P

m

(x), for m = 1; 2.

This quantity depends on the point x, but for 
onvenien
e we will assume it is


onstant. The total time T

m

required to 
al
ulate the image of the edges of N

ki

is given by the formula

T

m

= p

m

t

m

= d

m

L

m

t

m

=�

m

:

Let us assume that L

2

= L

2

1

, t

2

= 2t

1

, �

1

= �

2

, d

2

= 2d

1

. These assumptions are

nearly ful�lled in our 
ase. Using these assumptions we obtain

T

2

=T

1

= L

1

for the 
al
ulation of image of edges.

In our 
al
ulations L

1

2 (70; 500). This shows 
learly the advantage of the �rst

method.

Other important issues whi
h di�er our method from the method used by Mis-


haikow and Mrozek are following:
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� we are able to redu
e a signi�
ant part of 
al
ulations to the boundary of the

sets under 
onsiderations (this redu
e 
omputation time almost 10 times),

see se
. 4.3,

� we use Eu
lidean logarithmi
 norm, whi
h is apparently harder to 
ompute

than the logarithmi
 norms based on max or sum (redu
tion fa
tor of the

order 10

5

), see se
. 4.1.5, table 1,

� instead of Runge-Kutta method we use fourth-order Taylor method whi
h

produ
es twi
e smaller errors, see se
. 4.1.2,

� we use lo
ally 
al
ulated Lips
hitz 
onstants and error bounds.

At this point one may wonder how 
an Mis
haikow and Mrozek perform theirs


al
ulations in a reasonable time, as they do not do any of the things listed above.

The main point is that they invented method of intermediate se
tions, whi
h

is in spirit very 
lose to the idea of the double 
over des
ribed above and give

similar redu
tion fa
tor. They used 23 intermediate se
tions, for theirs 
hoi
e of

parameters to show that there is a topologi
al horseshoe for the Poin
are map.

But for the 
lassi
al parameter values they are unable to show that for the se
ond

iterate of Poin
are map in a reasonable time.

We believe that further redu
tion of 
omputation time is possible. It appears that

substantial redu
tion of 
omputation may be obtained by

� the use of Mis
haikow and Mrozek intermediate se
tion, but the evolution

between those se
tions should be rather followed by our methods, whi
h use

the better norm for the problem,

� the en
losure of solution of ODE's 
an be probably better 
al
ulated using

Lohner algorithm [Lo℄,

� the 
hoi
e of the initial sets 
an be optimized and the domains for TS-maps


an be generated by 
omputer, as the work of Szym
zak [Sz℄ shows.

The points listed above will obviously 
ompli
ate 
onsiderably our simple numer-

i
al algorithms, whi
h are relatively easy to implement. One should also have in

mind, that an elaborate algorithm whi
h theoreti
ally gives better estimates 
an

be so time 
onsuming, that this 
an make it unusable. This is for example the


ase of higher order (> 4) Runge-Kutta or Taylor integration methods.

6 Appendix

6.1 General remarks

In the PROFIL pa
kage the following data types are de�ned: REAL, INTERVAL,

INTERVAL VECTOR, INTERVAL MATRIX. The REAL data type is de�ned as the type
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Operation Return type Des
ription

Inf( a ) REAL lower bound of a

Sup( a ) REAL upper bound of a

Hull( r ) INTERVAL point interval [r,r℄

Hull( x,y ) INTERVAL 
onvex hull of x and y

Su

( a ) INTERVAL smallest interval in whi
h a

is 
ontained in the inner

Mid( a ) REAL midpoint of a

Diam( a ) REAL diameter of a

Sqr( a ) INTERVAL square of a

Interse
tion( a,b,
 ) INT if b and 
 interse
t 1 is re-

turned and a 
ontains the

interse
tion, otherwise 0 is

returned

x <= a returns TRUE if x is 
on-

tained in a

x < a returns TRUE if x is 
on-

tained in the interior of a

Norm( iv ) INTERVAL 
omputes the 2-norm of iv

Table 2: Operations and pro
edures from BIAS and PROFIL pa
kages used in

our program. r is of type REAL, x, y are of type REAL or INTERVAL, a, b and 
 are

of type INTERVAL, iv is of type INTERVAL VECTOR

double, the INTERVAL data type is a stru
ture 
omposed of two REALs being

the lower and upper bound of the interval. The INTERVAL VECTOR is a ve
tor

of INTERVALs (if iv is INTERVAL VECTOR then iv(i) denoted the i

th

element of iv.

The INTERVAL MATIRX is a matrix of INTERVALs. In the BIAS pa
kage all the basi


operations on the types spe
i�ed above are implemented. This in
ludes addition,

subtra
tion, multipli
ation and division. For example expression like C = A+B,

where A, B and C are intervals is implemented in su
h a way that

fa+ b: a 2 A; b 2 Bg � C:

In the table 2 we des
ribe several pro
edures from the BIAS and PROFIL pa
kages,

whi
h are used throughout the program. Along with the pro
edure name we give

the data type it returns and a short des
ription.

6.2 Pro
edures for 
omputation of the left side of the Lorenz

equation, its �rst and se
ond derivatives

The pro
edures below are used for the 
omputation of f(y), f

0

(y)�h, f

00

(y)�(h

1

;h

2

)

and f

00

(y) � (h;h).
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INTERVAL_VECTOR LeftSide( INTERVAL_VECTOR & Y ){

/* returns Left side of Lorenz equation */

INTERVAL_VECTOR LS(3);

LS( 1 ) = S * ( Y( 2 ) - Y( 1 ) );

LS( 2 ) = R * Y( 1 ) - Y( 2 ) - Y( 1 ) * Y( 3 );

LS( 3 ) = Y( 1 ) * Y( 2 ) - Q * Y( 3 );

return( LS );

}

INTERVAL_VECTOR FPrim( INTERVAL_VECTOR & Y, INTERVAL_VECTOR & H ){

INTERVAL_VECTOR FP(3);

/* returns first derivative of the left side of Lorenz system

at point Y on ve
tor H */

FP( 1 ) = -S *H(1) + S *H(2) ;

FP( 2 ) = (R-Y(3))*H(1) - 1 *H(2) - Y(1)*H(3);

FP( 3 ) = Y(2) *H(1) + Y(1)*H(2) - Q *H(3);

return( FP );

}

INTERVAL_VECTOR FBis( INTERVAL_VECTOR & H1, INTERVAL_VECTOR & H2 ){

INTERVAL_VECTOR FP(3);

/* returns se
ond derivative of the left side of Lorenz system

on ve
tors H1, H2 (F''(Y) does not depend on Y) */

FP( 1 ) = 0 ;

FP( 2 ) = - H1( 1 ) * H2( 3 ) - H1( 3 ) * H2( 1 ) ;

FP( 3 ) = H1( 1 ) * H2( 2 ) + H1( 2 ) * H2( 1 ) ;

return( FP );

}

INTERVAL_VECTOR FBis2( INTERVAL_VECTOR & H ){

INTERVAL_VECTOR FP(3);

/* returns se
ond derivative of the left side of Lorenz system

on ve
tors H1=H2=H (F''(Y) does not depend on Y) */

FP( 1 ) = 0 ;

FP( 2 ) = - 2 * H( 1 ) * H( 3 ) ;

FP( 3 ) = 2 * H( 1 ) * H( 2 ) ;

return( FP );

}

The following pro
edure 
omputes interval ve
tor PT 
ontaining traje
tory starting

from interval ve
tor P, after time [0; h℄.

BOOL GetTraj( INTERVAL_VECTOR P, INTERVAL_VECTOR & PT,

INTERVAL h ){

INTERVAL_VECTOR EpsVe
tVar( 3 );
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INTERVAL hfull,h2full2;

INTERVAL_VECTOR LS( 3 ),Y( 3 ),YEps( 3 );

/* EpsVe
t is an 3D INTERVAL_VECTOR defined as:

EpsVe
t = 0.005 * [-1,1℄x[-1,1℄x[-1,1℄ */

EpsVe
tVar = EpsVe
t;

hfull = Hull( 0,h );

h2full2 = Sqr( Hull( 0,h ) ) / 2;

LS = LeftSide( P );

while (TRUE) {

Y = P + hfull * LS + EpsVe
tVar ;

/* make YEps a little bigger than Y */

YEps = Su

( Y ) ;

PT = P + hfull * LS + h2full2 * FPrim( YEps,LeftSide( YEps ) );

/* PT < Y returns TRUE if every 
omponent of PT is 
ontained

in the interior of the 
orresponding 
omponent of Y:

PT subset int(Y) */

if ( PT < Y ) return( TRUE );

EpsVe
tVar *= 2;

if ( Max( Sup( EpsVe
tVar ) ) > 1000 ) return( FALSE );

}

}

The following pro
edure in
reases Epsilon by the radius of the interval ve
tor P

while P is shrinked to the point. New values of P and Epsilon are 
hosen in su
h

a way that B(POld; EpsilonOld) � B(P; Epsilon) and P is a point.

void De
PIn
Epsilon( INTERVAL_VECTOR & P, REAL & Epsilon ){

INTERVAL Eps;

INTERVAL_VECTOR PMid( 3 );

/* P is shrinked to the point and Epsilon in
reased in su
h

a way that B(POld,EpsilonOld) \subset B(P,Epsilon) */

/* Mid( P ) returns the midpoint of the interval ve
tor P */

PMid = Mid( P );

/* Norm( IV ) 
omputes the 2-norm of the INTERVAL_VECTOR IV*/

Eps = Norm(P - PMid);

Epsilon = Sup(Epsilon + Eps);

P = PMid;

}

6.3 Pro
edure for 
omputation of one integration step

BOOL NextPointExa
tTaylor4( INTERVAL_VECTOR & P0, REAL & Epsilon0,
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INTERVAL_VECTOR & P2, REAL & Epsilon2 ){

INTERVAL_VECTOR Y( 3 ),Err( 3 );

INTERVAL_VECTOR P1( 3 );

INTERVAL TempInt,F3;

BOOL Done;

REAL L,Epsilon1;

INTERVAL_VECTOR F( 3 ),FPF( 3 ),FBFF( 3 ),FPFPF( 3 );

P1 = P0;

Epsilon1 = Epsilon0;

/* OneVe
t is a 3D INTERVAL_VECTOR defined as

OneVe
t = [-1,1℄x[-1,1℄x[-1,1℄ */

/* The Eu
lidean ball B(P1,Epsilon1) is a subset of

P1 + Epsilon * OneVe
t */

/* Computation of Y - interval ve
tor 
ontaining the traje
tory

starting from set P1 + Epsilon1 * OneVe
t after time [0,h℄ */

if (!GetTraj(P1 + Epsilon1 * OneVe
t,Y,h)) return( FALSE );

/* Computation of logarithmi
 norm on this set */

if (!LogNorm( Y,L )) return( FALSE );

/* Transversality 
ondition --- we 
he
k if ve
tor field is

transversal to the Poin
are plane on the set Y */

/* pro
edure Interse
tion( A,B,C ) returns TRUE if B and C has

nonempty interse
tion */

if ( Interse
tion( TempInt,Y( 3 ),Poin
Value )){

/* Y( 3 ) and Poin
Value has nonempty interse
tion */

/* LeftSide3( Y ) returns the third 
omponent of the

left side of Lorenz equations: z'( Y ) = LeftSide3( Y ) */

F3 = LeftSide3( Y ) ;

/* if ve
tor field is not transversal i.e., 0 is in F3

then return FALSE */

if ( 0 <= F3 ) {

printf( "transversality error" ) ;

return( FALSE );

}

}

/* In
reasing of the radius of the ball

(a

ording to logarithmi
 norm) */

Epsilon2 = Sup( Exp( Hull( L ) * h ) * Epsilon1 );

/* fourth-order TAYLOR method */
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F = LeftSide( P1 );

FPF = FPrim( P1,F ); /* FPF = F'F */

FPFPF = FPrim( P1,FPF ); /* FPFPF = F'F'F */

FBFF = FBis2( F ); /* FBFF = F''FF */

P2 = P1 + h * F + h2*FPF / 2 + h3*( FBFF + FPFPF ) / 6 +

h4*( 3 * FBis( FPF,F ) + FPrim( P1,FBFF ) +

FPrim( P1,FPFPF ) )/24;

/* end of TAYLOR method */

/* Taylor series trun
ation error */

/* Error = (h^5/120)*(4*f''ff''ff+4*f''f'f'ff+3*f''f'ff'f+

3*f'f''ff'f+f'f'f''ff+f'f'f'f'f)*/

/* This error is 
omputed on Y 
ontaining traje
tory

starting from set P1 after time [0,h℄ */

if (!GetTraj( P1,Y,h ) ) return( FALSE );

F = LeftSide( Y );

FPF = FPrim( Y,F ); /* FPF = F'F */

FPFPF = FPrim( Y,FPF ); /* FPFPF = F'F'F */

FBFF = FBis2( F ); /* FBFF = F''FF */

Err = ( 4 * FBis( F,FBFF ) + 4 * FBis( FPFPF,F ) +

3 * FBis2( FPF ) + 3 * FPrim( Y,FBis( F,FPF ) ) +

FPrim( Y,FPrim( Y,FBFF ) ) +

FPrim( Y,FPrim( Y,FPFPF ) ) ) * h5 / 120;

/* Error addition */

P2 = P2 + Err ;

return( TRUE );

}

6.4 Pro
edure for the Poin
ar�e map

The pro
edure Poin
Fun �nds a 2D interval ve
tor EnP su
h that P(StP) � EnP.

BOOL Poin
Fun(INTERVAL_VECTOR & StP, INTERVAL_VECTOR & EnP,

INT Se
tionType){

/* Se
tionType - Type of 
omputation of the se
tion */

/* Se
tionOpt - with optimalization */

/* Se
tionNoComp - without 
omputation image - just 
he
king if

Poin
are map is defined */

#define LogNorm

/* LogNorm defined - size of neighborhood is in
reased

a

ording to Logarithmi
 norm, region is the ball

B(P,Epsilon), where P is the point INTERVAL_VECTOR

-- better results */
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/* LogNorm undefined - region is the INTERVAL_VECTOR P

-- worse results */

INTERVAL_VECTOR P( 3 ),P2( 3 ),PPP( 3 ),PPoin
Full( 3 ),Y( 3 );

REAL Epsilon,Epsilon2;

BOOL FirstSe
tion,Se
ondSe
Start;

BOOL done,OK;

P2( 1 ) = StP( 1 );

P2( 2 ) = StP( 2 );

P2( 3 ) = Poin
Value;

Epsilon2 = 0;

/* initiate values h=TimeStep,h2=h^2,...,h5=h^5 */

h = TimeStep;

h2 = Sqr( h ); h3 = h * h2;

h4 = h2 * h2; h5 = h * h4;

done = FALSE;

OK = TRUE;

FirstSe
tion = FALSE;

Se
ondSe
Start = FALSE;

while ( !done ) {

P = P2;

Epsilon = Epsilon2;

#ifdef LogNorm

/* In
reasing Epsilon and shrinking P */

De
PIn
Epsilon( P,Epsilon );

#endif

/* next integration step */

if (!NextPointExa
tTaylor4( P,Epsilon,P2,Epsilon2 )) {

printf( "NextPoint Error\n" );

done = TRUE;

OK = FALSE;

}

#ifdef LogNorm

/* In
reasing Epsilon2 and shrinking P2 to the point */

De
PIn
Epsilon( P2,Epsilon2 );

#endif

if ( ( Epsilon2 > 200 ) ) {

printf( "Epsilon error\n" );

done = TRUE;
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OK = FALSE;

}

/* sear
hing for first se
tion */

if ((!FirstSe
tion) &&

(Inf( P2( 3 ) - Epsilon2 ) > Sup( Poin
Value ) ) ) {

/* End of the first se
tion dete
ted */

FirstSe
tion = TRUE;

}

/* sear
hing for the start of se
ond se
tion */

if ( !Se
ondSe
Start && FirstSe
tion &&

(Inf( P2( 3 ) - Epsilon2 ) < Sup( Poin
Value ) ) ) {

/* Start of the se
ond se
tion dete
ted */

Se
ondSe
Start = TRUE;

PPoin
Full = P;

}

/* sear
hing for the end of se
ond se
tion */

if ( Se
ondSe
Start &&

(Sup( P2( 3 ) + Epsilon) < Inf( Poin
Value ) ) ) {

/* 
ondition in the if above means that the Se
ond

se
tion start has already been dete
ted and

the ball B(P2,Epsilon) lies after se
tion */

/* End of se
ond se
tion dete
ted */

done = TRUE;

}

/* se
tion 
omputation */

if ((Se
tionType==Se
tionOpt) && Se
ondSe
Start) {

if (!GetTraj(P + Epsilon * OneVe
t,PPP,h)) {

/* phi(B(P,Epsilon),[0,h℄) subset PPP */

OK = FALSE;

done = TRUE;

printf( "Se
ondSe
tion Error\n" );

}

/* in
r. PPoin
Full to in
lude phi(B(P,Epsilon),[0,h℄) */

PPoin
Full = Hull( PPoin
Full,PPP );

}

}

EnP( 1 ) = PPoin
Full( 1 );

EnP( 2 ) = PPoin
Full( 2 );

if (!OK) printf( "Poin
Fun Error\n" );

return( OK );

}
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