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Abstrat

In this paper we prove with omputer assistane the existene of haos in

a suitable Poinar�e map generated by the Lorenz system of equations. By

haos we mean the existene of symboli dynamis with in�nite number of

periodi trajetories. The proof ombines abstrat results based on the �xed

point index and �nite rigorous omputer alulations. Disussion onerning

numerial algorithms is also inluded.

PACS odes: 0270, 0547, 0545

Keywords: haos, omputer assisted proof

1

Researh supported by Polish Sienti� Grant no. 0449/P3/94/06 and by the University of

Mining and Metallurgy, grant no. 10.120.132.

2

orresponding author



Chaos in the Lorenz equations 2

0 Introdution

The Lorenz system of equations (1) introdued by Lorenz [L℄ is one of standard

examples of deterministi haos.

_x = s(y � x);

_y = rx� y � xz; (1)

_z = xy � qz;

For various parameter values one an observe di�erent behavior of solutions, bi-

furations of periodi trajetories, horseshoes, strange attrators, et. (see the

book of Sparrow [Sp℄). For parameter values (s; r; q) = (10; 28; 8=3) one observe

the famous Lorenz attrator. Piture of this attrator an be found in almost ev-

ery modern book onerning dynamial systems or haos, see for example book

of Gukenheimer and Holmes [GH℄. On the oneptual level the Lorenz attrator

is well understood in terms of geometrial models [W℄, [ABS1℄, [ABS2℄, [Sh℄. On

the other hand a number of rigorous results onerning haoti dynamis in the

Lorenz system is rather small. The main diÆulty is the inability to obtain esti-

mates whih show rigorously that assumptions of these models are satis�ed. This

diÆulty is, of ourse, not unique to the Lorenz system. In fat, obtaining the

neessary estimates is the entral obstale for most of non-linear analysis. In the

result we report here the omputer was used to overome these diÆulties.

The �rst rigorous results onerning haos in Lorenz equations are Hassard et

all [HHTZ℄ result for parameter values (s; r; q) = (10; 76; 9) and Mishaikow and

Mrozek [MM1℄ result for (s; r; q) = (45; 54; 10). In these papers authors are able

to show with omputer assistane that some kind of symboli dynamis is present,

but the existene of periodi points is not laimed. There exists also an analytial

result of Chen [Ch℄, who was able to establish that the Lorenz equations support

a horseshoe, for large r and s lose to

2q�1

3

. This is highly advantageous result.

But as the other results ited before this result annot be extended to the most

popular values (s; r; q) = (10; 28; 8=3).

In this paper we present the �rst proof that the Lorenz system with "lassial"

(most popular) parameter values (s; r; q) = (10; 28; 8=3) has in�nitely many qual-

itatively distint periodi trajetories (see se. 3 for a preise statement). This

is done by showing rigorously with omputer assistane that the seond iterate

of a suitably hosen Poinar�e return map has a "topologial horseshoe". In our

approah, whih is purely topologial, we do not use any estimates onerning

derivatives of the Poinar�e map, whih are neessary to establish a sort of hyper-

boliity present in horseshoes [Mo℄. This is obviously a weakness of the method, as

we are unable to prove a sensitive dependene on initial onditions present in the

horseshoe. Paradoxially, the topologial harater of this method deides about

its strength, as assumptions of our topologial theorem are relatively easy to hek

with omputer assistane, whih seems to be impossible for smooth methods with

nowaday omputers [SA℄.
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Our method is a variation of the method for proving haos in dynamial systems

developed by the seond author in [Z97b℄ and [Z96b℄. This method was applied

previously to the R�ossler equations, the H�enon map and to the Chua's iruit [G℄.

In order to use this tehnique to prove the existene of haos in Lorenz equations

some modi�ations of the method were neessary. The method is based on the

�xed point index and is similar to the Mishaikow and Mrozek method based on

the disrete Conley index [MM1℄, [MM2℄. On the topologial level the di�erenes

between these methods are following:

� We replae the more general, but rather diÆult onept of the disrete Con-

ley index, by the �xed point index, whih seems to be muh easier onept.

It is also partiularly well suited to study �xed and periodi points.

� We de�ne a lass of TS-maps (see se. 1) for whih one an easily ompute

the �xed point indies of interest and we formulate theorem 1 about haoti

behavior for TS-map without any referene to the notion of the �xed point

index.

� If the TS-map is a homeomorphism (for example it is a Poinar�e map for

ODE's) then assumptions of our theorem an be heked only on the bound-

aries, whih has enormous impat on omputation time (see se. 5).

Both the methods (the one used in this paper and the method of Mishaikow and

Mrozek) involve some algebrai topology and at �rst sight seem to be more ompli-

ated than the method of Hassard et al. [HHTZ℄ whih is based on onnetedness.

Also the amount of omputation for this last method is smaller. But we would

like to stress that this method is less general, as it depends onsiderably on di�er-

ential equations under investigations and annot be used to prove the existene of

periodi points.

The seond aim of our paper is to show limitations of existing `interval arithmeti'

in the task of alulating in a reasonable time the image of `big sets' with rela-

tively poor auray. In the proof of haos the evaluation of the Poinar�e map is

neessary. This involves integration of the system equations. The main problem

enountered during integration of the dynamial system in `interval arithmeti' is

the `wrapping e�et' whih auses very quik growth of the set of initial onditions

for the next integration step. We overome this problem by estimating the growth

of error along the trajetory in the Eulidean norm while the set of initial ondi-

tions for integration method is kept very small (in fat we use a point interval).

All the operations are performed in `interval arithmeti' to obtain rigorous errors

for elementary operations.

1 TS-maps

The aim of this setion is to reall the notion of TS-maps introdued in [Z97a℄,

whih is speial ase of window hains introdued by R. Easton in [E75℄, [E89℄.
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By R, R

+

Z, N we will denote the sets of real numbers, nonnegative real numbers,

integers and natural numbers (inluding zero) respetively. Let (X; �) be a metri

spae. Let Z � X . By int(Z), l(Z), bd(Z) we denote respetively the interior,

the losure and the boundary of the set Z.

Let f : X 7! X be a ontinuous map and N be a subset of X . By f

jN

we will

denote the map obtained by restrition of the domain of f to the set N . The

maximum invariant part of N (with respet to f) is de�ned by

Inv(N; f) =

\

i2Z

f

�i

jN

(N):

For the union of disjoint retangles P =

S

P

k

� R

2

, where P

k

= [a

k

; b

k

℄� [

k

; d

k

℄

we set

L(P ) :=

[

fa

k

g � [

k

; d

k

℄; (2)

R(P ) :=

[

fb

k

g � [

k

; d

k

℄; (3)

V(P ) := L(P ) [R(P ); (4)

H(P ) :=

[

([a

k

; b

k

℄� f

k

g [ [a

k

; b

k

℄� fd

k

g): (5)

So L(P ), R(P ), V(P ), H(P ) are unions of left vertial, right vertial, vertial and

horizontal edges in P respetively.

In the remaining part of this setion we onsider maps on the plane R

2

.

Let us �x u; d 2 R, u > d and a sequene a

�1

= �1 < a

0

< a

1

< : : : a

2K�2

<

a

2K�1

< a

2K

=1, where a

i

2 R for i = 0; 1; : : : ; 2K � 1. Let

N

i

:= [a

2i

; a

2i+1

℄� [d; u℄; for i = 0; : : : ;K � 1; (6)

E

i

:= (a

2i�1

; a

2i

)� [d; u℄; for i = 0; : : : ;K; (7)

N := N

0

[N

1

[ : : : [N

K�1

; (8)

E := E

0

[E

1

[ : : : [E

K�1

[ E

K

: (9)

The sets E

i

; N

i

are ontained in the horizontal strip (�1;1) � [d; u℄ in the fol-

lowing order (we ompare x-oordinates)

E

0

< N

0

< E

1

< N

1

< : : : < E

K�1

< N

K�1

< E

K

: (10)

Suppose further that for i = 0; 1; : : : ;K we have sets E

0

i

suh that E

i

� E

0

i

,

l(E

0

i

) \ (H(N) n V(N)) = ; , lE

0

i

\ lE

0

j

= ; for i 6= j and that there exist

ontinuous homotopies h

i

: [0; 1℄�E

0

i

7! E

0

i

suh that h

i

(0; p) = p, h

i

(1; p) 2 E

i

and

h

i

(t; p) = p for t 2 [0; 1℄, p 2 E

i

. This means that the set E

0

i

an be ontinuously

deformed to the set E

i

without any intersetion with the setN . E

i

is a deformation

retrat of E

0

i

. We set

E

0

:= E

0

0

[E

0

1

[ : : : E

0

K

:
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Figure 1: An example of TS-map. Sets N

0

; N

1

; N

2

and their images under f

De�nition 1. Let the sets E

i

; E

0

i

; N

i

be as above. Let D be an open set suh

that N � D and a map f : D 7! R

2

be ontinuous. We say that f is TS-

map (topologial shift) (relatively to the sets N , E, E

0

) if there exist funtions

l; r : f0; 1; : : : ;K � 1g 7! f0; 1; : : : ;Kg suh that the following onditions hold

f(L(N

i

)) � E

0

l(i)

; f(R(N

i

)) � E

0

r(i)

; (11)

f(N) � int(E

0

[N): (12)

Geometrially, the above onditions mean that the image of vertial edges does

not interset the set N and the image of N is ontained in the set whih an

be ontinuously deformed to the horizontal strip without any intersetion with

horizontal edges of N .

If for some j we have r(i) � j < l(i) or l(i) � j < r(i) then we will say that the

image of N

i

overs N

j

horizontally.

Figure 1 shows a shemati example of TS-map on three sets N

0

, N

1

, N

2

. The sets

E

0

i

oinide with E

i

. The orners of N

i

are denoted by numbers, their images by

numbers with primes. Corners 5; 6 are omitted beause they almost oinide with

orners 4; 3 respetively. It is easy to see that the image of N

0

overs horizontally

N

2

and both sets N

0

, N

1

are overed horizontally by the images of N

1

and N

2

.

We are looking for periodi points of the TS-map f . We will haraterize them by

periodi in�nite sequenes  = (

i

)

i2N

of symbols 0; 1; : : : ;K�1 with the property

f

i

(x) 2 N



i

for i 2 N.
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Let �

K

:= f0; 1; : : : ;K � 1g

Z

, �

+

K

:= f0; 1; : : : ;K � 1g

N

. �

K

, �

+

K

are topologial

spaes with the Tihonov topology. On �

K

, �

+

K

we have the shift map � given by

(�())

i

= 

i+1

:

Let A = [�

ij

℄ be a K �K-matrix, with nonnegative elements (�

ij

2 R

+

[ f0g for

i; j = 0; 1; : : : ;K � 1). We de�ne �

A

� �

K

and �

+

A

� �

+

K

by

�

A

:= f = (

i

)

i2Z

j �



i



i+1

> 0g; (13)

�

+

A

:= f = (

i

)

i2N

j �



i



i+1

> 0g: (14)

Obviously �

+

A

, �

A

are invariant under �.

Let f be a TS-map. To relate the dynamis of f on Inv(N; f) with shift dynamis

on �

+

K

we introdue the transition matrix of f denoted by A(f).

We de�ne A(f)

ij

, where i; j = 0; 1; : : : ;K � 1 by

A(f)

ij

:=

�

1; if E

l(i)

< N

j

< E

r(i)

or E

l(i)

> N

j

> E

r(i)

;

0; otherwise:

It easy easy to see that A(f)

i;j

6= 0, if N

j

lays between the images of vertial edges

of N

i

or in other words if f(N

i

) overs N

j

horizontally (we deform the image by

the homotopies h

i

if neessary).

For i 2 N we de�ne the map �

i

: Inv(N; f) 7! f0; 1; : : : ;Kg given by �

i

(x) = j i�

f

i

(x) 2 N

j

. Now we de�ne the map � : Inv(N; f) 7! �

+

K

by �(x) := (�

i

(x))

i2N

.

The map � assigns to the point x the indies of sets N

i

whih its trajetory goes

through. It is easy to see that we have

� Æ f = � Æ �: (15)

If f is a homeomorphism then the de�nition of �

i

an be extended to all integers

and in this ase the domain of � is �

K

.

Obviously the semi-onjugay (15) alone is not a sign of ompliated dynamis.

It may happen that the set �(Inv(N; f)) is �nite or even empty. The dynamis is

ompliated if �(Inv(N; f)) is in�nite.

De�nition 2. Let  2 �

+

K

( 2 �

K

). We will say that  is admissible for f in N

if there exists x



2 N suh that f

i

(x



) 2 N



i

for i 2 N (Z). If  is periodi we

additionally require that x



is a periodi point with the same prinipal period as .

If Z � �

+

K

(Z � �

K

) we will say that Z is admissible for f in N if every sequene

in Z is admissible for f in N .

The following theorem, proved in [Z97a℄, gives the haraterization of the set of

admissible sequenes for TS-maps.
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Theorem 1. Let f be a TS-map. Then �

+

A(f)

� �(Inv(N; f)). The preimage of

any periodi sequene from �

+

A(f)

ontains periodi points of f . If we additionally

suppose that f is a homeomorphism then �

A(f)

� �(Inv(N; f)).

Results similar to the theorem above, but without the existene of periodi points,

an be found also in [MM2℄ and [E89℄.

2 TS-map struture for the Lorenz system

In this setion we desribe an appliation of theorem 1 to the ase when the sets N

i

are non-disjoint. This is the situation enountered by us in the Lorenz equations

(see next setion).

Let us �x u; d 2 R, u > d and two sequenes (a

0i

), (a

1i

) with elements a

ki

2

R[f�1;1g for i = �1; 0; 1; 2; 3; 4 and k = 0; 1, suh that for �xed k the following

onditions hold a

k;�1

= �1 < a

k;0

< a

k;1

< a

k;2

< a

k;3

< a

k;4

= 1. Let us

de�ne

N

ki

:= [a

k;2i

; a

k;2i+1

℄� [d; u℄; for i = 0; 1; (16)

E

ki

:= (a

k;2i�1

; a

k;2i

)� [d; u℄; for i = 0; 1; 2; (17)

N

k

:= N

k0

[N

k1

; for k = 0; 1; (18)

N := N

0

[N

1

; (19)

E

k

:= E

k0

[ E

k1

[E

k2

; (20)

E := E

0

[ E

1

: (21)

Obviously for �xed k the sets N

ki

are disjoint, but it may happen that for example

N

0i

\N

1i

6= ;.

Let D be an open set, N � D and f : D 7! R

2

be a ontinuous map. Suppose

that the following onditions hold (ompare Fig. 3 in the next setion)

f(N) � int(E [N); (22)

f(L(N

00

)) � E

11

; f(R(N

00

)) � E

12

; (23)

f(L(N

01

)) � E

10

; f(R(N

01

)) � E

11

; (24)

f(L(N

10

)) � E

00

; f(R(N

10

)) � E

02

; (25)

f(L(N

11

)) � E

00

; f(R(N

11

)) � E

02

: (26)

It should be noted that in the above onditions assumptions onerning the images

of N

ki

are expressed using the sets E

1�k;j

.

Let M � 0 be a real number. We de�ne

~

N

0i

:= N

0i

; (27)
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~

E

0i

:= E

0i

; (28)

~

N

1i

:= N

1i

+ (M; 0); (29)

~

E

1i

:= E

1i

+ (M; 0); (30)

~

N

k

:=

~

N

k0

[

~

N

k1

; (31)

~

N :=

~

N

0

[

~

N

1

: (32)

We de�ne

~

f :

~

N 7! R

2

by

~

f(x) :=

�

f(x) + (M; 0) for x 2

~

N

0

,

f(x)� (M; 0) for x 2

~

N

1

.

(33)

From ompatness of N and ontinuity of f it follows that there exists M suh

that

~

N

0

\

~

N

1

= ;; (34)

~

f(

~

N

k

) \

~

N

k

= ;; for k = 0; 1. (35)

We �x suh M . Hene from onditions (22{26) we get

~

f(

~

N) � int(

~

E [

~

N); (36)

~

f(L(

~

N

0;0

)) �

~

E

1;1

;

~

f(R(

~

N

0;0

)) �

~

E

1;2

; (37)

~

f(L(

~

N

0;1

)) �

~

E

1;0

\

~

E

0;2

;

~

f(R(

~

N

0;1

)) �

~

E

1;1

; (38)

~

f(L(

~

N

1;0

)) �

~

E

0;0

;

~

f(R(

~

N

1;0

)) �

~

E

0;2

\

~

E

1;0

; (39)

~

f(L(

~

N

1;1

)) �

~

E

0;0

;

~

f(R(

~

N

1;1

)) �

~

E

0;2

\

~

E

1;0

: (40)

We will treat the indies of the sets

~

N

ki

as binary expansions so 00 orresponds to

0, 01 to 1 , 10 to 2 and 11 to 3. With this onvention we see that

~

f is a TS-map

with a transition matrix A(

~

f) given by

A(

~

f) :=

2

6

6

4

0; 0; 1; 1

0; 0; 1; 1

0; 1; 0; 0

1; 0; 0; 0

3

7

7

5

:

From theorem 1 applied to the map

~

f it follows that the set �

+

A(

~

f)

is admissible

for the map

~

f . Let us observe that

A

2

(

~

f) :=

2

6

6

4

1; 1; 0; 0

1; 1; 0; 0

0; 0; 1; 1

0; 0; 1; 1

3

7

7

5

:

The following lemma follows from the form of the square of transition matrix of

~

f

and the ondition (35).
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Lemma 2. The set f00; 01g

N

[ f10; 11g

N

is admissible for

~

f

2

.

There is an obvious onnetion between f

2

and

~

f

2

. From the onstrution of

~

f it

follows immediately that

x 2 N

0

; f(x) 2 N

1

i� x 2

~

N

0

;

~

f(x) 2

~

N

1

; (41)

f

2

(x) =

~

f

2

(x); if x 2 N

0

; f(x) 2 N

1

: (42)

Similar statements with obvious modi�ations hold when we exhange indies 0

and 1 in the above onditions.

From lemma 2 and onditions (41), (42) we obtain

Theorem 3. Let f and sets N

ki

, E

ki

be as above and onditions (36{40) are

satis�ed. Then the set f00; 01g

N

= �

+

2

is admissible for f

2

in N

0

= (N

00

[N

01

).

3 Chaos in the Lorenz equations

The Lorenz equations are given by [L℄

_x = s(y � x);

_y = rx� y � xz; (43)

_z = xy � qz;

where s = 10, r = 28, q = 8=3.

We onsider a transversal plane � = f(x; y; z) 2 R

3

: z = r � 1g. This a standard

hoie for the Poinar�e setion. Let P be a Poinar�e map generated on the plane

�, i.e., for x 2 � by P(x) we denote the point at whih the trajetory based at x

intersets � for the �rst time in the spei�ed diretion.

We have found for P the struture desribed in the previous setion. To express

this struture we introdue the new rotated oordinates on the plane z = r � 1

�x := x os � � y sin �; (44)

�y := x sin � + y os �; (45)

where the angle � = 70

Æ

(� = 2�(70=360) in radians). The line �x = 0 is very

lose to the intersetion of the stable manifold of the origin (0; 0; 0) with the plane

z = r � 1 in the region of interest.

Let us set a

00

= �1:6, a

01

= �0:4, a

02

= 0:4, a

03

= 1:6, a

10

= �3:3, a

11

= �0:9,

a

12

= 0:9, a

13

= 3:3, d = �6, u = 6. We de�ne sets N

ki

, E

ki

as in the previous

setion. Sets N

ki

are shown in the Fig. 2. Despite of the hange of oordinates

(44,45) we will use the notion of the left, right, vertial and horizontal edges with

respet to the old oordinates in order to be onsistent with the formulation of

theorems in setions 1 and 2.
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Figure 2: Retangles N

00

, N

01

, N

10

and N

11

on the transversal plane. N

00

and

N

01

are printed with solid lines, while N

10

and N

11

with dashed ones

In omputer simulations we have integrated equations (43) using the fourth-order

Runge-Kutta algorithm with the time step h = 0:005. In Fig. 3 we show the

images of borders of N

ki

under Poinar�e map obtained by numerial integration.

The image ofN

00

oversN

11

horizontally and similarly the image ofN

01

oversN

10

(ompare Fig. 3a). Both images of N

10

and N

11

overs N

00

[N

01

horizontally (see

Fig. 3b). These results indiate that omplex behavior of the system and existene

of in�nitely many periodi orbits is possible. The next step is to prove stritly this

observation. In order to perform this task we have developed a omputer program

using proedures for interval omputations from the BIAS and PROFIL pakages

[K℄.

With omputer assistane we have proved the following lemma.

Lemma 4. The Poinare map P is well de�ned and ontinuous on N . The on-

ditions (22{26) hold for P.

Proof of this lemma will be given in the next setion. Combining the above lemma

and theorem 3 we obtain main theorem of this paper.

Theorem 5. For all parameter values in a suÆiently small neighborhood of

(s; r; q) = (10; 28; 8=3) there exists a transversal setion I � fz = 27g suh that

the Poinar�e map P indued by (43) is well de�ned and ontinuous on I. There

exists ontinuous surjetive map � : Inv(I;P

2

)! �

2

, suh that

� ÆP

2

= � Æ �:

The preimage of any periodi sequene from �

2

ontains periodi points of P

2

.
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Figure 3: Images of borders of N

00

, N

01

, N

10

and N

11

on the transversal plane

| omputer simulations, (a) images of edges of N

00

and N

01

, one an learly see

that image of N

00

overs N

11

horizontally and symmetrially the image of N

01

overs N

10

, (b) images of edges of N

10

and N

11

, both images overs N

00

and N

01

horizontally

Proof. From ontinuous dependene of the solutions of ODE's on parameters it

follows easily that lemma 4 holds in some neighborhood U of (s; r; q) = (10; 28; 8=3)

in the parameter spae. We �x U and we onsider the Poinar�e map P generated

by (43) for parameters values from U .

We set I := Inv(N

00

[N

01

;P

2

). We de�ne the map � : I ! �

2

by

�

i

(x) = 0; if P

2i

(x) 2 N

00

; (46)

�

i

(x) = 1; if P

2i

(x) 2 N

01

: (47)

From theorem 3 we obtain that every periodi sequene from �

2

is admissible

for P in N

00

[ N

01

. Now from density of the periodi sequenes in �

2

we get

�(I) = �

2

.

4 Details of omputer alulations

In our omputer program we have used the proedures for interval omputations

from BIAS and PROFIL pakages [K℄ prepared by Olaf Kn�uppel from Tehnial

University Hamburg-Harburg.

In this setion we present the detailed desription of the proedure for omputation

of the image of a retangle under Poinar�e map and then we will desribe the proof

of lemma 4.

The whole omputer program used during the omputer-assisted proof an be

found at:

<http://galaxy.ui.agh.edu.pl/�galias/int.html>.
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4.1 One integration step

First we desribe the proedure NextPointExatTaylor4 for omputation of the

image of an Eulidean ball B(P

0

; "

0

) under dynamial system after time h, where

P

0

is a three-dimensional interval vetor and "

0

is a positive real value. The

proedure �nds a three-dimensional interval vetor P

2

and a real value "

2

suh that

the image of the ball B(P

0

; "

0

) after time h is enlosed within the ball B(P

2

; "

2

)

'(B(P

0

; "

0

); h) � B(P

2

; "

2

): (48)

For that task the fourth-order Taylor integration formula and the logarithmi norm

are used. They are desribed in the following subsetions.

4.1.1 Proedure for omputation of '(P; [0; h℄)

Before we present the implementation of the Taylor integration formula and the

omputation of logarithmi norm let us desribe the proedure GetTraj(P; P

T

; h),

whih is used several times in the program. Its ode is given in the Appendix.

This proedure omputes the three-dimensional interval P

T

ontaining all the tra-

jetories starting from the three-dimensional interval vetor P after time t 2 [0; h℄.

The proedure is based on the following lemma:

Lemma 6. Let y(0) be a set of initial onditions. Let Y be a onvex subset of

R

3

, " be a positive real number and let us de�ne Y

"

:= B(Y; "). By Hull(A) we will

denote the smallest losed ball in the max-norm ontaining the set A. Let

X := y(0) + [0; h℄ � f(y(0)) +

[0; h℄

2

2

Hull(f

0

(Y

"

)f(Y

"

));

where all operations on the right side are of set type, for example f(Y

"

) = fx : x =

f(y), for some y 2 Y

"

g and [0; h℄ � f(y(0)) = ft � x : t 2 [0; h℄;x 2 f(y(0))g.

If X � Y then y([0; h℄) := '(y(0); [0; h℄) � X.

Proof. Let t = inffs:y(s) 62 Xg. We will show that t � h. If t < h then there exists

Æ > 0 suh that y(s) 2 Y

"

for t � s � t+Æ < h. From the �rst order Taylor formula

for all s 2 [t; t+Æ℄ we have for i = 1; 2; 3 y

i

(s) = y

i

(0)+sf

i

(y(0))+

1

2

s

2

(f

0

(y)f(y))

i

,

where y 2 Y

"

depends on s and i. It follows that y(s) 2 X for all s 2 [t; t + Æ℄.

Hene y(s) 2 X for all s 2 [0; t + Æ℄ and inffs:y(s) 62 Xg � t + Æ > t whih is a

ontradition.

In the proedure GetTraj(P; P

T

; h) we �rst hoose Y . Then using the �rst order

Taylor formula (y(t + h) = y + hy

0

(t) +

1

2

h

2

y

00

(t + �h)) we ompute image P

T

of P after time [0; h℄, where y

00

is evaluated over the set Y

"

� Y . If the image

is enlosed in Y then P

T

is returned. Otherwise we hoose a bigger set Y and

repeat the omputations. From the previous lemma it follows that the following

proposition is true.

Proposition 1. If GetTraj(P; P

T

; h) returns TRUE then '(P; [0; h℄) � P

T

.
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4.1.2 Taylor integration method

For integration of the equation (43) the fourth-order Taylor formula has been used.

We have also tested the fourth-order Runge-Kutta formula but the omputation

time was longer due to greater number of oeÆients in the exat formula for

the error term. Let us denote by y(t) = (y

1

(t); y

2

(t); y

3

(t))

T

the solution of the

equation (43). Let us reall that the standard fourth-order Taylor integration

method is based on the expansion

y

i

(t+h) = y

i

(t)+hy

0

i

(t)+

1

2

h

2

y

00

i

(t)+

1

6

h

3

y

000

i

(t)+

1

24

h

4

y

(4)

i

(t)+

1

120

h

5

y

(5)

i

(t+�

i

h);

(49)

where i = 1; 2; 3 and �

i

2 [0; 1℄ for i = 1; 2; 3. Using the equation y

0

= f(y) we

an easily ompute y

(k)

in terms of f , f

0

and f

00

. For the Lorenz system

f

0

(y) � h =

0

�

�S S 0

R� y

3

�1 �y

1

y

2

y

1

�Q

1

A

0

�

h

1

h

2

h

3

1

A

; (50)

where y = (y

1

; y

2

; y

3

)

T

and h = (h

1

; h

2

; h

3

)

T

. The seond derivative f

00

(y) does

not depend on y and an be omputed as

f

00

(y) � (h

1

;h

2

) =

0

�

0

�h

11

h

32

� h

31

h

12

h

11

h

22

+ h

21

h

12

1

A

; (51)

where h

1

= (h

11

; h

21

; h

31

) and h

2

= (h

12

; h

22

; h

32

). As the left hand f(y) of the

equation (43) does not ontain terms of order greater than two it is lear that

f

(k)

� 0 for k > 2. f , f

0

and f

00

are omputed within the program using proedures

LeftSide, FPrim and FBis given in the Appendix. FBis2 is the FBis proedure

for the ase of two equal arguments.

Using the hain rule of di�erentiation we an obtain formulas for y

(k)

. In the

following we write f , f

0

and f

00

instead of f(y(t)), f

0

(y(t)) and f

00

(y(t)) respetively.

y

0

(t) = f(y(t)) = f ;

y

00

(t) =

d

dt

(f(y(t))) =

df

dt

(y(t))

dy

dt

(t) = f

0

(y(t))f(y(t)) = f

0

f ;

y

000

(t) = f

00

� + f

0

f

0

f ;

y

(4)

(t) = 3f

00

f

0

� + f

0

f

00

� + f

0

f

0

f

0

f ;

y

(5)

(t) = 4f

00

�

00

� + 4f

00

f

0

f

0

� + 3f

00

f

0

�

0

f + 3f

0

f

00

�

0

f + f

0

f

0

f

00

� + f

0

f

0

f

0

f

0

f :

The formula we use for omputation of y(t+ h) reads

y(t+h) = y(t)+hf+

h

2

2

f

0

f+

h

3

6

(f

00

�+f

0

f

0

f)+

h

4

24

(3f

00

f

0

�+f

0

f

00

�+f

0

f

0

f

0

f)+e(y; h);

(52)



Chaos in the Lorenz equations 14

where f , f

0

and f

00

stands for f(y(t)), f

0

(y(t)) and f

00

(y(t)). The error e(y; h)

introdued by omitting the higher order terms is equal to

e(y; h) =

h

5

120

(4f

00

�

00

�+4f

00

f

0

f

0

�+3f

00

f

0

�

0

f+3f

0

f

00

�

0

f+f

0

f

0

f

00

�+f

0

f

0

f

0

f

0

f); (53)

where this time f , f

0

and f

00

are omputed at points y

i

(t+ �

i

h) with �

i

2 [0; 1℄.

4.1.3 Logarithmi norm

The proedure LogNorm(P;L) omputes the upper bound L of logarithmi norm

of the matrix f

0

(y) over the three-dimensional interval vetor P . Let us reall that

the Logarithmi norm [HNW℄ of matrix Q is de�ned by

m(Q) := lim

h!0;h>0

jjI + hQjj � 1

h

: (54)

For the Eulidean norm on the right side of the above equation the logarithmi

norm of Q an be obtained using the formula

m(Q) = largest eigenvalue of the matrix

1

2

(Q

T

+Q): (55)

In the proedure LogNorm(P,L) we �rst ompute the oeÆients of the harater-

isti equation of the matrix (f

0

(P ) + f

0

(P )

T

)=2. Then using the Cardano formula

we �nd roots of the harateristi equation and we hoose the largest one (the

roots are real as the matrix (f

0

(P ) + f

0

(P )

T

)=2 is symmetri). If for some reason

this omputation is not possible then LogNorm returns FALSE. If the proedure

returns TRUE then L is the upper bound of the logarithmi norm over the set P .

4.1.4 Proedure NextPointExatTaylor4

The proedure NextPointExatTaylor4(P

0

; "

0

; P

2

; "

2

) omputes the image of a

ball B(P

0

; "

0

) under dynamial system after time h. For given 3D interval vetor

P

0

and real value "

0

the proedure �nds a 3D interval vetor P

2

and a real value

"

2

suh that the image of the ball B(P

0

; "

0

) after time h is enlosed within the ball

B(P

2

; "

2

)

'(B(P

0

; "

0

); h) � B(P

2

; "

2

): (56)

If the proedure is not apable to ompute the image it returns FALSE. In the

opposite ase it omputes P

2

and "

2

and returns TRUE. The proedure onsists of

two parts.

In the �rst part the image of P

0

after time h is omputed using the fourth-order

Taylor integration formula with exat omputation of the error term. We �rst

alulate P

2

aording to equation (52) without the last term e(y; h). During this

omputation f , f

0

and f

00

are omputed over the set P

0

. Then using the proedure



Chaos in the Lorenz equations 15

GetTraj(P

0

; h) we �nd the set Y , ontaining trajetories starting from P

0

after

time t 2 [0; h℄:

'(P

0

; [0; h℄) � Y:

Then we ompute e(P

0

; h) using equation (53), where f , f

0

and f

00

are omputed

over Y . Finally we modify P

2

by adding the error term and we obtain a three-

dimensional interval vetor P

2

ontaining the image of P

0

after time h, i.e.,

'(P

0

; h) � P

2

:

In the seond part of the proedure we ompute the hange of the radius of the

Eulidean ball during evolution after time h. This omputation is based on the

following theorem.

Theorem 7 ([HNW℄). Suppose that v(t) and w(t) are solutions of the system of

di�erential equations y

0

= f(y) satisfying jjv(t

0

)�w(t

0

)jj � ". Let us also assume

that the logarithmi norm m(f

0

(y)) � L on the onvex set ontaining trajetories

fv(t): t 2 [t

0

; t

1

℄g and fw(t): t 2 [t

0

; t

1

℄g. Then for t 2 [t

0

; t

1

℄ we have the estimate

jjw(t) � v(t)jj � "e

L(t�t

0

)

: (57)

In order to use the above theorem we have to ompute the logarithmi norm over

the onvex set ontaining all the trajetories starting from B(P

0

; "

0

) after time

[0; h℄. In order to �nd suh a onvex set we all the proedure GetTraj with

the parameters B(P

0

; "

0

) and h obtaining Y � '(B(P

0

; "

0

); h) (as Y is an interval

vetor it is obviously onvex). Then we all the proedure LogNorm(Y; L) obtaining

the upper bound L of the logarithmi norm of the matrix f

0

(y) over the set Y and

�nally we inrease the size of the ball aording to the following formula:

"

2

= "

0

e

Lh

: (58)

From the onsiderations presented above it follows that

Proposition 2. If the proedure NextPointExatTaylor4(P

0

; "

0

; P

2

; "

2

) returns

TRUE then

'(B(P

0

; "

0

); h) � B(P

2

; "

2

):

In order to minimize wrapping e�et the proedure NextPointExatTaylor4 is

alled with parameter P

0

being a three-dimensional point interval.

Although P

0

is a point interval P

2

is an interval vetor with nonzero diameter

due to the existene of the error term in the integration formula and omputation

errors. Before alling the proedure NextPointExatTaylor4 again the interval

P

2

is shrinked to the point and "

2

is inreased appropriately. In this way we do

not ontrol the size of error by the interval arithmeti methods. Instead we use

expliitly the Lipshitz onstant obtained using the logarithmi Eulidean norm.

Suh ation redues the wrapping e�et, whih would ause very quik growth of

omputational errors in ase of using interval arithmeti alone.
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4.1.5 Redution of wrapping e�et with logarithmi norm

We have also tested other possibilities of omputation of the image of an interval

vetor under dynamial system.

The �rst possibility tested was the one without logarithmi norm. This solution

appeared to be muh worse. Due to the wrapping e�et the diameter of the interval

grows muh quiker than in the ase when we use the logarithmi norm.

In order to show how big the di�erene is let us denote by d

1

the diameter of the

retangle whih image under Poinar�e map we ompute and by d

2

the diameter

of the retangle returned by the proedure for evaluation of the Poinar�e map.

When we used logarithmi norm the quotient d

2

=d

1

was between 70 and 490 for

d

1

= 0:005, while in the seond ase it was greater then 9�10

9

for d

1

= 5�10

�9

(for

greater d

1

we were even not able to evaluate the Poinar�e map). With logarithmi

norm the omputation time was approximately 7 hours. It was estimated to be

more than 10

7

times longer without logarithmi norm.

We have also tried to use the logarithmi norm based on maximum norm instead

of Eulidean norm. In this ase the quotient d

2

=d

1

was approximately 1000 times

greater than in the ase of logarithmi norm based on Eulidean norm.

Computation method d

2

=d

1

Computation time

logarithmi norm based on Eulidean norm 70� 490 7h

logarithmi norm based on maximum norm > 10

5

> 10

4

h

without logarithmi norm > 10

9

> 10

8

h

Table 1: Comparison of omputation time for di�erent methods

These results show that without logarithmi norm based on Eulidean norm we

would not be able to prove the assumptions about Poinar�e map (ompare also

table 1).

4.2 Proedure for the Poinar�e map

One we have the proedure for omputation of one integration step we an on-

strut proedure for the whole Poinar�e map P. The proedure PoinFun om-

putes image of the two-dimensional interval P

start

ontained in the transversal

plane under Poinar�e map. It returns a two-dimensional interval P

end

suh that

P(P

start

) � P

end

:

During the proedure we perform subsequent integration steps alling proedure

NextPointExatTaylor4 obtaining balls B(P

n

; "

n

) ontaining images '(P

start

; nh)

of the initial retangle after h, 2h,. . . . Initially we assign P

start

to P

0

and set

"

0

= 0 (hene B(P

0

; "

0

) = P

start

). Before every integration step we shrink the

three-dimensional interval vetor P

n

to the point interval vetor and inrease "

n
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appropriately. This task is performed by the proedure DePInEpsilon (see

Appendix), whih �nds a point interval vetor P

n

and a real "

n

suh that

B(P

n;old

; "

n;old

) � B(P

n

; "

n

):

This ation is neessary in order to avoid the wrapping e�et.

The result of integration is a sequene of pairs P

n

; "

n

ful�lling onditions

'(B(P

n

; "

n

); h) � B(P

n+1

; "

n+1

); P

start

= B(P

0

; "

0

):

A trajetory of a point in N

00

[N

10

intersets the transversal plane twie before

we an evaluate the Poinar�e map. The �rst intersetion is in a di�erent diretion.

During the proedure the position of the trajetory is onstantly monitored. As

the image of the initial retangle is within the ball B(P

n

; "

n

) an intersetion is

not �nished until the whole ball lies on the proper side of the transversal plane

fz = r�1g. From the beginning of the proedure we hek for the �rst intersetion.

If B(P

n

; "

n

) � f(x; y; z): z > r � 1g the boolean variable FirstSetion is set to

TRUE, whih means that the �rst intersetion has already been �nished. Then we

searh for the beginning of the seond setion. We look for the smallest n suh

that B(P

n

; ") \ f(x; y; z): z < r � 1g 6= ;. At this moment we start to ompute

the interval vetor PPoinFull ontaining the image of the initial retangle under

Poinar�e map. We assign it to be PPoinFull = P

n�1

. In every iteration the

three-dimensional interval PPoinFull is inreased, it beomes a onvex hull of

the previous value of PPoinFull and the set '(B(P

n�1

; "

n�1

); [0; h℄). Integration

is ontinued until the seond intersetion with the transversal plane is �nished.

This orresponds to the �rst integration step for whih trajetory lies ompletely

after transversal plane (B(P

n

; "

n

) � fz < r � 1g).

The image of the initial retangle under Poinar�emap is ontained in the projetion

of PPoinFull to the transversal plane.

In the ourse of the proedure we onstantly hek the transversality ondition in

order to ensure that the trajetory does not interset the transversal plane more

than twie before the image under Poinar�e map is evaluated and that interse-

tions with transversal plane are really transversal. In fat it should be heked

only three times. First time at the beginning of the proedure to ensure that

the trajetory enters the half-spae fz < r � 1g (the ondition is z

0

(P

start

) < 0).

The seond time it should be heked during the �rst intersetion: for eah n

suh that '(B(P

n

; "

n

); [0; h℄) \ f(x; y; z): z = r � 1g 6= ; one should hek if

z

0

('(B(P

n

; "

n

); [0; h℄)) > 0. The third time it should be heked during the seond

intersetion. This time we should hek if z

0

('(B(P

n

; "

n

); [0; h℄)) < 0. In order

to simplify the proedure and to shorten the omputation time we perform the

transversality hek in the proedure NextPointExatTaylor4. For every n suh

that

'(B(P

n

; "

n

); [0; h℄) \ f(x; y; z): z = r � 1g 6= ;

we hek whether

z

0

('(B(P

n

; "

n

); [0; h℄)) 6= 0:
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If this ondition does not hold then NextPointExatTaylor4 returns FALSE. From

the disussion presented above it follows that

Proposition 3. If the proedure PoinFun(P

start

; P

end

) returns TRUE then

P(P

start

) � P

end

:

4.3 Computer assisted proof

Using the proedure PoinFun we have performed a omputer-assisted proof of

the following theorem.

Theorem 8. For all parameter values in a suÆiently small neighborhood of

(S;R;Q) = (10; 28; 8=3)

1. there exists a ontinuous Poinar�e map de�ned on N

00

[N

10

,

2. images of `horizontal' edges H(N

00

[N

10

) of N

00

and N

10

lie in the interior

of N [ E i.e.,

� P(H(N

00

[N

10

)) � int(N [E),

3. P(N

00

) overs N

11

horizontally and P(N

10

) overs N

00

[N

10

horizontally,

i.e., images of `vertial' edges of N

00

and N

10

ful�ll the following onditions

� P(L(N

00

)) lies on the left side of N

11

i.e., P(L(N

00

)) � E

11

,

� P(R(N

00

)) lies on the right side of N

11

i.e., P(R(N

00

)) � E

12

,

� P(L(N

10

)) lies on the left side of N

00

i.e., P(L(N

10

)) � E

00

,

� P(R(N

10

)) lies on the right side of N

01

i.e., P(R(N

10

)) � E

02

.

Proof. During the proof we have used the proedure PoinFun for evaluation of

the Poinar�e map.

1. In the �rst step the set N

00

[ N

10

was overed by 56970 retangles. We

omputed images of these retangles under Poinar�e map proving in this

way the existene of ontinuous Poinar�e map.

2. `Horizontal' edges of N

00

[ N

10

were overed by 70 retangles eah. We

proved that images of all of these retangles lie within the strip int(N [E).

In Fig. 4.a one an see the retangles overing the bottom horizontal edge

of N

00

[N

10

and the retangles ontaining their images under Poinar�e map

omputed with the proedure PoinFun.
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Figure 4: Images of edges of N

ij

under Poinar�e map | exat omputations,

(a) 70 retangles overing the bottom vertial edge of N

00

[N

10

and their images

omputed with the proedure PoinFun ( it has been heked that the output

retangles lie in int(N [ E), (b) 320 retangles overing L(N

10

) and their images

omputed with the proedure PoinFun (it has been heked that the output

retangles lie in the set E

02

)

3. `Vertial' edges L(N

00

), R(N

00

), L(N

10

) and R(N

10

) were overed by 351,

7744, 320 and 1177 retangles respetively. For eah of these retangles the

proedure PoinFun was alled. We proved that images of these retangles

are inluded within appropriate subsets of E [ N . An example of overing

of an horizontal edge is shown in Fig. 4.b. In this �gure one the overing of

L(N

10

) with retangles and images of these retangles under Poinar�e map

omputed with the proedure PoinFun are shown. One an see that output

retangles lie in E

02

.

In the �rst part of the proof we have used the time step h = 0:01, while in the

seond and third parts we have used h = 0:003. In the �rst part we have used

greater time step as we were not interested in the size of the retangles returned

by the proedure and hene we ould aept greater errors. The time interval over

whih we had to integrate the equations to evaluate the Poinar�e map varied from

0:67 to 0:94 for di�erent points within N

00

[ N

10

. This orresponds to less then

320 integration steps for the evaluation of the Poinar�e map when using the time

step equal to 0:003. The ratio of the size of the output retangle to the size of the

initial retangle on whih the Poinar�e map is evaluated depends on the position

of the initial retangle and varies from 27 to 530.

All the omputations were performed using the double preision | this is the

preision implemented in the BIAS and PROFIL pakages. We believe however
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that the auray does not have muh inuene on the performane of the method.

We think that for smaller auray (single preision or even less) it would also be

possible to arry out the proof. In this ase we would have to divide the sets under

onsideration into smaller parts. This would inrease the omputation time.

The above proof was performed on the Sun Ultra 1 omputer, with 167 MHz

lok. The program was ompiled with gnu C++ ompiler. It took approximately

7 hours to omplete the proof.

The above theorem is not stritly equivalent to Lemma 4. Instead of proving the

ondition P(N

00

[N

10

) � int(N [E) we only proved this ondition for the border,

namely P(bd(N

00

[ N

10

)) � int(N [ E) with an additional ondition that the

Poinar�e map P is de�ned on the whole N

00

[N

10

. From that one an prove that

ondition P(N

00

[ N

10

) � int(N [ E) holds (ompare proof of lemma 4 below).

Suh a proeeding redues the omputational time onsiderably. When we hek

only the existene of the Poinar�e map we do not have to worry about the size

of the images of retangles under Poinar�e map. Hene we an hoose bigger

retangles overing N

00

[N

10

. During the proof of the �rst part of theorem 8 we

needed 56970 retangles. If we would hek the stronger ondition we would need

approximately 10 times more retangles, whih would inrease the omputation

time.

Proof of lemma 4. Due to symmetry of the problem from theorem 8 it follows that

the Poinar�e map P is well de�ned and ontinuous on N and onditions (23{26)

are satis�ed. It remains to show that from

P(bd(N

ki

)) � int(N [ E); (59)

for k; i = 0; 1 the ondition (22) follows.

Let us de�ne W := int(N [ E). The set W is the horizontal strip i.e. W =

(�1;1) � (d; u). From the general theory of di�erential equations it follows

that the Poinar�e map P is a homeomorphism onto the image. From the Jordan-

Brouwer Theorem [Gr, Th. 18.6, 18.7, 18.8℄ the set P(intN

ki

) is open and

bd(P(intN

ki

)) = P(bd(N

ki

)): (60)

Now suppose that for some k, i the set P(N

ki

) is not ontained in W . From (59)

and de�nition of W it follows that there exists x 2 int(N

ki

) suh that P(x)) =2 W .

Let P(x) = (x; y). We may assume that y � u (i.e., P(x) is above the strip W ).

Now onsider the half-ray H = fP(x) + (0; t); t 2 R

+

g.

Obviously H \ P(intN

ki

) 6= ; and H is unbounded. So H is not ontained in

P(intN

i

) and from onnetedness of H and (60) it follows that

H \P(bd(N

ki

)) 6= ;: (61)

From (59) and (61) it follows that H \W 6= ;. But by onstrution H \W = ;.

Hene we get a ontradition. Thus (22) holds.
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5 Disussion of the relevane of the method in the

omputer assisted proofs

In the previous setion we have proved the existene of symboli dynamis for the

seond iterate of the Poinare map P by rigorous numerial alulation of P, but

not the seond iterate. Another method to obtain this result would be to alulate

P

2

and then to apply the theorem 1 diretly. Both approahes to this proof look

almost equivalent, but the seond one is muh more time-onsuming. We want

now to explain this in detail.

Method 1. We have to alulate P on the sets N

00

, N

01

, N

10

, N

11

with error less

then �

1

.

Method 2. We have to alulate P

2

on the sets N

00

, N

01

only with error less then

�

2

.

Below we de�ne some quantities for both methods, we will index them by m = 1; 2

for the method 1 and 2 respetively.

To alulate the image of the edges of N

ki

or the image of the entire set N

ki

we

over it by the �nite number of segments or retangles with the size Æ

m

given

by Æ

m

= �

m

=L

m

, where L

m

is the Lipshitz onstant for the map P

m

. In the

real algorithm we alulate the Lipshitz onstants loally, but for our heuristi

disussion we will assume that L

m

is onstant. The number of retangles p

m

overing edges of N

ki

is given by p

m

= d

m

=Æ

m

= d

m

L

m

=�

m

, where d

m

is the

total length of edges of N

ki

required in the method (for m = 1 the domain of

alulations is bigger).

Now let t

m

be a proessor time required for the alulation of P

m

(x), for m = 1; 2.

This quantity depends on the point x, but for onveniene we will assume it is

onstant. The total time T

m

required to alulate the image of the edges of N

ki

is given by the formula

T

m

= p

m

t

m

= d

m

L

m

t

m

=�

m

:

Let us assume that L

2

= L

2

1

, t

2

= 2t

1

, �

1

= �

2

, d

2

= 2d

1

. These assumptions are

nearly ful�lled in our ase. Using these assumptions we obtain

T

2

=T

1

= L

1

for the alulation of image of edges.

In our alulations L

1

2 (70; 500). This shows learly the advantage of the �rst

method.

Other important issues whih di�er our method from the method used by Mis-

haikow and Mrozek are following:
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� we are able to redue a signi�ant part of alulations to the boundary of the

sets under onsiderations (this redue omputation time almost 10 times),

see se. 4.3,

� we use Eulidean logarithmi norm, whih is apparently harder to ompute

than the logarithmi norms based on max or sum (redution fator of the

order 10

5

), see se. 4.1.5, table 1,

� instead of Runge-Kutta method we use fourth-order Taylor method whih

produes twie smaller errors, see se. 4.1.2,

� we use loally alulated Lipshitz onstants and error bounds.

At this point one may wonder how an Mishaikow and Mrozek perform theirs

alulations in a reasonable time, as they do not do any of the things listed above.

The main point is that they invented method of intermediate setions, whih

is in spirit very lose to the idea of the double over desribed above and give

similar redution fator. They used 23 intermediate setions, for theirs hoie of

parameters to show that there is a topologial horseshoe for the Poinare map.

But for the lassial parameter values they are unable to show that for the seond

iterate of Poinare map in a reasonable time.

We believe that further redution of omputation time is possible. It appears that

substantial redution of omputation may be obtained by

� the use of Mishaikow and Mrozek intermediate setion, but the evolution

between those setions should be rather followed by our methods, whih use

the better norm for the problem,

� the enlosure of solution of ODE's an be probably better alulated using

Lohner algorithm [Lo℄,

� the hoie of the initial sets an be optimized and the domains for TS-maps

an be generated by omputer, as the work of Szymzak [Sz℄ shows.

The points listed above will obviously ompliate onsiderably our simple numer-

ial algorithms, whih are relatively easy to implement. One should also have in

mind, that an elaborate algorithm whih theoretially gives better estimates an

be so time onsuming, that this an make it unusable. This is for example the

ase of higher order (> 4) Runge-Kutta or Taylor integration methods.

6 Appendix

6.1 General remarks

In the PROFIL pakage the following data types are de�ned: REAL, INTERVAL,

INTERVAL VECTOR, INTERVAL MATRIX. The REAL data type is de�ned as the type
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Operation Return type Desription

Inf( a ) REAL lower bound of a

Sup( a ) REAL upper bound of a

Hull( r ) INTERVAL point interval [r,r℄

Hull( x,y ) INTERVAL onvex hull of x and y

Su( a ) INTERVAL smallest interval in whih a

is ontained in the inner

Mid( a ) REAL midpoint of a

Diam( a ) REAL diameter of a

Sqr( a ) INTERVAL square of a

Intersetion( a,b, ) INT if b and  interset 1 is re-

turned and a ontains the

intersetion, otherwise 0 is

returned

x <= a returns TRUE if x is on-

tained in a

x < a returns TRUE if x is on-

tained in the interior of a

Norm( iv ) INTERVAL omputes the 2-norm of iv

Table 2: Operations and proedures from BIAS and PROFIL pakages used in

our program. r is of type REAL, x, y are of type REAL or INTERVAL, a, b and  are

of type INTERVAL, iv is of type INTERVAL VECTOR

double, the INTERVAL data type is a struture omposed of two REALs being

the lower and upper bound of the interval. The INTERVAL VECTOR is a vetor

of INTERVALs (if iv is INTERVAL VECTOR then iv(i) denoted the i

th

element of iv.

The INTERVAL MATIRX is a matrix of INTERVALs. In the BIAS pakage all the basi

operations on the types spei�ed above are implemented. This inludes addition,

subtration, multipliation and division. For example expression like C = A+B,

where A, B and C are intervals is implemented in suh a way that

fa+ b: a 2 A; b 2 Bg � C:

In the table 2 we desribe several proedures from the BIAS and PROFIL pakages,

whih are used throughout the program. Along with the proedure name we give

the data type it returns and a short desription.

6.2 Proedures for omputation of the left side of the Lorenz

equation, its �rst and seond derivatives

The proedures below are used for the omputation of f(y), f

0

(y)�h, f

00

(y)�(h

1

;h

2

)

and f

00

(y) � (h;h).
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INTERVAL_VECTOR LeftSide( INTERVAL_VECTOR & Y ){

/* returns Left side of Lorenz equation */

INTERVAL_VECTOR LS(3);

LS( 1 ) = S * ( Y( 2 ) - Y( 1 ) );

LS( 2 ) = R * Y( 1 ) - Y( 2 ) - Y( 1 ) * Y( 3 );

LS( 3 ) = Y( 1 ) * Y( 2 ) - Q * Y( 3 );

return( LS );

}

INTERVAL_VECTOR FPrim( INTERVAL_VECTOR & Y, INTERVAL_VECTOR & H ){

INTERVAL_VECTOR FP(3);

/* returns first derivative of the left side of Lorenz system

at point Y on vetor H */

FP( 1 ) = -S *H(1) + S *H(2) ;

FP( 2 ) = (R-Y(3))*H(1) - 1 *H(2) - Y(1)*H(3);

FP( 3 ) = Y(2) *H(1) + Y(1)*H(2) - Q *H(3);

return( FP );

}

INTERVAL_VECTOR FBis( INTERVAL_VECTOR & H1, INTERVAL_VECTOR & H2 ){

INTERVAL_VECTOR FP(3);

/* returns seond derivative of the left side of Lorenz system

on vetors H1, H2 (F''(Y) does not depend on Y) */

FP( 1 ) = 0 ;

FP( 2 ) = - H1( 1 ) * H2( 3 ) - H1( 3 ) * H2( 1 ) ;

FP( 3 ) = H1( 1 ) * H2( 2 ) + H1( 2 ) * H2( 1 ) ;

return( FP );

}

INTERVAL_VECTOR FBis2( INTERVAL_VECTOR & H ){

INTERVAL_VECTOR FP(3);

/* returns seond derivative of the left side of Lorenz system

on vetors H1=H2=H (F''(Y) does not depend on Y) */

FP( 1 ) = 0 ;

FP( 2 ) = - 2 * H( 1 ) * H( 3 ) ;

FP( 3 ) = 2 * H( 1 ) * H( 2 ) ;

return( FP );

}

The following proedure omputes interval vetor PT ontaining trajetory starting

from interval vetor P, after time [0; h℄.

BOOL GetTraj( INTERVAL_VECTOR P, INTERVAL_VECTOR & PT,

INTERVAL h ){

INTERVAL_VECTOR EpsVetVar( 3 );
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INTERVAL hfull,h2full2;

INTERVAL_VECTOR LS( 3 ),Y( 3 ),YEps( 3 );

/* EpsVet is an 3D INTERVAL_VECTOR defined as:

EpsVet = 0.005 * [-1,1℄x[-1,1℄x[-1,1℄ */

EpsVetVar = EpsVet;

hfull = Hull( 0,h );

h2full2 = Sqr( Hull( 0,h ) ) / 2;

LS = LeftSide( P );

while (TRUE) {

Y = P + hfull * LS + EpsVetVar ;

/* make YEps a little bigger than Y */

YEps = Su( Y ) ;

PT = P + hfull * LS + h2full2 * FPrim( YEps,LeftSide( YEps ) );

/* PT < Y returns TRUE if every omponent of PT is ontained

in the interior of the orresponding omponent of Y:

PT subset int(Y) */

if ( PT < Y ) return( TRUE );

EpsVetVar *= 2;

if ( Max( Sup( EpsVetVar ) ) > 1000 ) return( FALSE );

}

}

The following proedure inreases Epsilon by the radius of the interval vetor P

while P is shrinked to the point. New values of P and Epsilon are hosen in suh

a way that B(POld; EpsilonOld) � B(P; Epsilon) and P is a point.

void DePInEpsilon( INTERVAL_VECTOR & P, REAL & Epsilon ){

INTERVAL Eps;

INTERVAL_VECTOR PMid( 3 );

/* P is shrinked to the point and Epsilon inreased in suh

a way that B(POld,EpsilonOld) \subset B(P,Epsilon) */

/* Mid( P ) returns the midpoint of the interval vetor P */

PMid = Mid( P );

/* Norm( IV ) omputes the 2-norm of the INTERVAL_VECTOR IV*/

Eps = Norm(P - PMid);

Epsilon = Sup(Epsilon + Eps);

P = PMid;

}

6.3 Proedure for omputation of one integration step

BOOL NextPointExatTaylor4( INTERVAL_VECTOR & P0, REAL & Epsilon0,
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INTERVAL_VECTOR & P2, REAL & Epsilon2 ){

INTERVAL_VECTOR Y( 3 ),Err( 3 );

INTERVAL_VECTOR P1( 3 );

INTERVAL TempInt,F3;

BOOL Done;

REAL L,Epsilon1;

INTERVAL_VECTOR F( 3 ),FPF( 3 ),FBFF( 3 ),FPFPF( 3 );

P1 = P0;

Epsilon1 = Epsilon0;

/* OneVet is a 3D INTERVAL_VECTOR defined as

OneVet = [-1,1℄x[-1,1℄x[-1,1℄ */

/* The Eulidean ball B(P1,Epsilon1) is a subset of

P1 + Epsilon * OneVet */

/* Computation of Y - interval vetor ontaining the trajetory

starting from set P1 + Epsilon1 * OneVet after time [0,h℄ */

if (!GetTraj(P1 + Epsilon1 * OneVet,Y,h)) return( FALSE );

/* Computation of logarithmi norm on this set */

if (!LogNorm( Y,L )) return( FALSE );

/* Transversality ondition --- we hek if vetor field is

transversal to the Poinare plane on the set Y */

/* proedure Intersetion( A,B,C ) returns TRUE if B and C has

nonempty intersetion */

if ( Intersetion( TempInt,Y( 3 ),PoinValue )){

/* Y( 3 ) and PoinValue has nonempty intersetion */

/* LeftSide3( Y ) returns the third omponent of the

left side of Lorenz equations: z'( Y ) = LeftSide3( Y ) */

F3 = LeftSide3( Y ) ;

/* if vetor field is not transversal i.e., 0 is in F3

then return FALSE */

if ( 0 <= F3 ) {

printf( "transversality error" ) ;

return( FALSE );

}

}

/* Inreasing of the radius of the ball

(aording to logarithmi norm) */

Epsilon2 = Sup( Exp( Hull( L ) * h ) * Epsilon1 );

/* fourth-order TAYLOR method */
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F = LeftSide( P1 );

FPF = FPrim( P1,F ); /* FPF = F'F */

FPFPF = FPrim( P1,FPF ); /* FPFPF = F'F'F */

FBFF = FBis2( F ); /* FBFF = F''FF */

P2 = P1 + h * F + h2*FPF / 2 + h3*( FBFF + FPFPF ) / 6 +

h4*( 3 * FBis( FPF,F ) + FPrim( P1,FBFF ) +

FPrim( P1,FPFPF ) )/24;

/* end of TAYLOR method */

/* Taylor series trunation error */

/* Error = (h^5/120)*(4*f''ff''ff+4*f''f'f'ff+3*f''f'ff'f+

3*f'f''ff'f+f'f'f''ff+f'f'f'f'f)*/

/* This error is omputed on Y ontaining trajetory

starting from set P1 after time [0,h℄ */

if (!GetTraj( P1,Y,h ) ) return( FALSE );

F = LeftSide( Y );

FPF = FPrim( Y,F ); /* FPF = F'F */

FPFPF = FPrim( Y,FPF ); /* FPFPF = F'F'F */

FBFF = FBis2( F ); /* FBFF = F''FF */

Err = ( 4 * FBis( F,FBFF ) + 4 * FBis( FPFPF,F ) +

3 * FBis2( FPF ) + 3 * FPrim( Y,FBis( F,FPF ) ) +

FPrim( Y,FPrim( Y,FBFF ) ) +

FPrim( Y,FPrim( Y,FPFPF ) ) ) * h5 / 120;

/* Error addition */

P2 = P2 + Err ;

return( TRUE );

}

6.4 Proedure for the Poinar�e map

The proedure PoinFun �nds a 2D interval vetor EnP suh that P(StP) � EnP.

BOOL PoinFun(INTERVAL_VECTOR & StP, INTERVAL_VECTOR & EnP,

INT SetionType){

/* SetionType - Type of omputation of the setion */

/* SetionOpt - with optimalization */

/* SetionNoComp - without omputation image - just heking if

Poinare map is defined */

#define LogNorm

/* LogNorm defined - size of neighborhood is inreased

aording to Logarithmi norm, region is the ball

B(P,Epsilon), where P is the point INTERVAL_VECTOR

-- better results */
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/* LogNorm undefined - region is the INTERVAL_VECTOR P

-- worse results */

INTERVAL_VECTOR P( 3 ),P2( 3 ),PPP( 3 ),PPoinFull( 3 ),Y( 3 );

REAL Epsilon,Epsilon2;

BOOL FirstSetion,SeondSeStart;

BOOL done,OK;

P2( 1 ) = StP( 1 );

P2( 2 ) = StP( 2 );

P2( 3 ) = PoinValue;

Epsilon2 = 0;

/* initiate values h=TimeStep,h2=h^2,...,h5=h^5 */

h = TimeStep;

h2 = Sqr( h ); h3 = h * h2;

h4 = h2 * h2; h5 = h * h4;

done = FALSE;

OK = TRUE;

FirstSetion = FALSE;

SeondSeStart = FALSE;

while ( !done ) {

P = P2;

Epsilon = Epsilon2;

#ifdef LogNorm

/* Inreasing Epsilon and shrinking P */

DePInEpsilon( P,Epsilon );

#endif

/* next integration step */

if (!NextPointExatTaylor4( P,Epsilon,P2,Epsilon2 )) {

printf( "NextPoint Error\n" );

done = TRUE;

OK = FALSE;

}

#ifdef LogNorm

/* Inreasing Epsilon2 and shrinking P2 to the point */

DePInEpsilon( P2,Epsilon2 );

#endif

if ( ( Epsilon2 > 200 ) ) {

printf( "Epsilon error\n" );

done = TRUE;
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OK = FALSE;

}

/* searhing for first setion */

if ((!FirstSetion) &&

(Inf( P2( 3 ) - Epsilon2 ) > Sup( PoinValue ) ) ) {

/* End of the first setion deteted */

FirstSetion = TRUE;

}

/* searhing for the start of seond setion */

if ( !SeondSeStart && FirstSetion &&

(Inf( P2( 3 ) - Epsilon2 ) < Sup( PoinValue ) ) ) {

/* Start of the seond setion deteted */

SeondSeStart = TRUE;

PPoinFull = P;

}

/* searhing for the end of seond setion */

if ( SeondSeStart &&

(Sup( P2( 3 ) + Epsilon) < Inf( PoinValue ) ) ) {

/* ondition in the if above means that the Seond

setion start has already been deteted and

the ball B(P2,Epsilon) lies after setion */

/* End of seond setion deteted */

done = TRUE;

}

/* setion omputation */

if ((SetionType==SetionOpt) && SeondSeStart) {

if (!GetTraj(P + Epsilon * OneVet,PPP,h)) {

/* phi(B(P,Epsilon),[0,h℄) subset PPP */

OK = FALSE;

done = TRUE;

printf( "SeondSetion Error\n" );

}

/* inr. PPoinFull to inlude phi(B(P,Epsilon),[0,h℄) */

PPoinFull = Hull( PPoinFull,PPP );

}

}

EnP( 1 ) = PPoinFull( 1 );

EnP( 2 ) = PPoinFull( 2 );

if (!OK) printf( "PoinFun Error\n" );

return( OK );

}
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