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0 Introduction

The Lorenz system of equations (1) introduced by Lorenz [L] is one of standard
examples of deterministic chaos.

T :S(y—l'),
gy =re—y-—uaz, (1)
z =Y — 4z,

For various parameter values one can observe different behavior of solutions, bi-
furcations of periodic trajectories, horseshoes, strange attractors, etc. (see the
book of Sparrow [Sp]). For parameter values (s,r,q) = (10,28,8/3) one observe
the famous Lorenz attractor. Picture of this attractor can be found in almost ev-
ery modern book concerning dynamical systems or chaos, see for example book
of Guckenheimer and Holmes [GH]. On the conceptual level the Lorenz attractor
is well understood in terms of geometrical models [W], [ABS1], [ABS2], [Sh]. On
the other hand a number of rigorous results concerning chaotic dynamics in the
Lorenz system is rather small. The main difficulty is the inability to obtain esti-
mates which show rigorously that assumptions of these models are satisfied. This
difficulty is, of course, not unique to the Lorenz system. In fact, obtaining the
necessary estimates is the central obstacle for most of non-linear analysis. In the
result we report here the computer was used to overcome these difficulties.

The first rigorous results concerning chaos in Lorenz equations are Hassard et
all [HHTZ] result for parameter values (s,r,q) = (10,76,9) and Mischaikow and
Mrozek [MM1] result for (s,r,q) = (45,54,10). In these papers authors are able
to show with computer assistance that some kind of symbolic dynamics is present,
but the existence of periodic points is not claimed. There exists also an analytical
result of Chen [Ch], who was able to establish that the Lorenz equations support
a horseshoe, for large r and s close to % This is highly advantageous result.
But as the other results cited before this result cannot be extended to the most

popular values (s,r,q) = (10, 28,8/3).

In this paper we present the first proof that the Lorenz system with ”classical”
(most popular) parameter values (s,r,q) = (10, 28,8/3) has infinitely many qual-
itatively distinct periodic trajectories (see sec. 3 for a precise statement). This
is done by showing rigorously with computer assistance that the second iterate
of a suitably chosen Poincaré return map has a ”topological horseshoe”. In our
approach, which is purely topological, we do not use any estimates concerning
derivatives of the Poincaré map, which are necessary to establish a sort of hyper-
bolicity present in horseshoes [Mo]. This is obviously a weakness of the method, as
we are unable to prove a sensitive dependence on initial conditions present in the
horseshoe. Paradoxically, the topological character of this method decides about
its strength, as assumptions of our topological theorem are relatively easy to check
with computer assistance, which seems to be impossible for smooth methods with
nowaday computers [SA].
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Our method is a variation of the method for proving chaos in dynamical systems
developed by the second author in [Z97b] and [Z96b]. This method was applied
previously to the Rossler equations, the Hénon map and to the Chua’s circuit [G].
In order to use this technique to prove the existence of chaos in Lorenz equations
some modifications of the method were necessary. The method is based on the
fixed point index and is similar to the Mischaikow and Mrozek method based on
the discrete Conley index [MM1], [MM2]. On the topological level the differences
between these methods are following:

e We replace the more general, but rather difficult concept of the discrete Con-
ley index, by the fixed point index, which seems to be much easier concept.
It is also particularly well suited to study fixed and periodic points.

e We define a class of TS-maps (see sec. 1) for which one can easily compute
the fixed point indices of interest and we formulate theorem 1 about chaotic
behavior for TS-map without any reference to the notion of the fixed point
index.

e If the TS-map is a homeomorphism (for example it is a Poincaré map for
ODE’s) then assumptions of our theorem can be checked only on the bound-
aries, which has enormous impact on computation time (see sec. 5).

Both the methods (the one used in this paper and the method of Mischaikow and
Mrozek) involve some algebraic topology and at first sight seem to be more compli-
cated than the method of Hassard et al. [HHTZ] which is based on connectedness.
Also the amount of computation for this last method is smaller. But we would
like to stress that this method is less general, as it depends considerably on differ-
ential equations under investigations and cannot be used to prove the existence of
periodic points.

The second aim of our paper is to show limitations of existing ‘interval arithmetic’
in the task of calculating in a reasonable time the image of ‘big sets’ with rela-
tively poor accuracy. In the proof of chaos the evaluation of the Poincaré map is
necessary. This involves integration of the system equations. The main problem
encountered during integration of the dynamical system in ‘interval arithmetic’ is
the ‘wrapping effect’ which causes very quick growth of the set of initial conditions
for the next integration step. We overcome this problem by estimating the growth
of error along the trajectory in the Euclidean norm while the set of initial condi-
tions for integration method is kept very small (in fact we use a point interval).
All the operations are performed in ‘interval arithmetic’ to obtain rigorous errors
for elementary operations.

1 TS-maps

The aim of this section is to recall the notion of TS-maps introduced in [Z97a],
which is special case of window chains introduced by R. Easton in [E75], [E89).
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By R, Ry Z, N we will denote the sets of real numbers, nonnegative real numbers,
integers and natural numbers (including zero) respectively. Let (X, p) be a metric
space. Let Z C X. By int(Z), cl(Z), bd(Z) we denote respectively the interior,
the closure and the boundary of the set Z.

Let f: X = X be a continuous map and N be a subset of X. By f|ny we will
denote the map obtained by restriction of the domain of f to the set N. The
maximum invariant part of N (with respect to f) is defined by

nv(N, ) = () fd ().

i€EL

For the union of disjoint rectangles P = |J P, C R?, where Py, = [a, bi] X [ck, dk]
we set

L(P) = J{ar} x [on, d], (2)
R(P) = | J{br} x [ex, dil, (3)
V(P) = L(P)UR(P), (4)
H(P) = |J(lan,bx] x {cr} U [ar, bi] x {di}). (5)

So L(P), R(P), V(P), H(P) are unions of left vertical, right vertical, vertical and
horizontal edges in P respectively.

In the remaining part of this section we consider maps on the plane R2.

Let us fix u,d € R, u > d and a sequence a_1 = —00 < ag < a1 < ...02K 2 <
asx -1 < azg = 00, where a; € R for i =0,1,...,2K — 1. Let

N; [asi, azit1] X [d,u], for i=0,...,K —1, (6)
E; = (azi—1,a9;) x [d,u], for i=0,...,K, (7)
N = NoUN;U...UNg_ 1, (8)
E = EyUEU...UEkg_1UEFEkg. (9)

The sets F;, N; are contained in the horizontal strip (—oc,00) x [d,u] in the fol-
lowing order (we compare x-coordinates)

Ey<Nygy<Ei <Ni <...<Eg_1<Ng_1 <Fg. (10)

Suppose further that for i = 0,1,..., K we have sets E! such that E; C EI,
c(E)) N (H(N)\ V(N)) = 0, clEf NclE} = 0 for i # j and that there exist
continuous homotopies h; : [0, 1] x E} — E! such that h;(0,p) = p, h;(1,p) € E; and
hi(t,p) = p for ¢t € [0,1], p € E;. This means that the set E} can be continuously
deformed to the set £; without any intersection with the set N. E; is a deformation
retract of E]. We set

E' :=EyUEjU...Ey.
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Figure 1: An example of TS-map. Sets Ny, N1, Ny and their images under f

Definition 1. Let the sets E;, E},N; be as above. Let D be an open set such
that N C D and a map f : D — R® be continuous. We say that f is TS-
map (topological shift) (relatively to the sets N, E, E') if there exist functions
lLr:{0,1,...,K =1} — {0,1,..., K} such that the following conditions hold

FLN)) C By, FR(ND) C B, (11)
F(N) C int(E' U N). (12)

Geometrically, the above conditions mean that the image of vertical edges does
not intersect the set N and the image of N is contained in the set which can
be continuously deformed to the horizontal strip without any intersection with
horizontal edges of V.

If for some j we have r(i) < j < (i) or I(i) < j < r(i) then we will say that the
image of N; covers N; horizontally.

Figure 1 shows a schematic example of TS-map on three sets Ny, N1, No. The sets
E! coincide with E;. The corners of N; are denoted by numbers, their images by
numbers with primes. Corners 5,6 are omitted because they almost coincide with
corners 4, 3 respectively. It is easy to see that the image of Ny covers horizontally
N> and both sets Ny, Ny are covered horizontally by the images of N7 and Na.

We are looking for periodic points of the TS-map f. We will characterize them by
periodic infinite sequences ¢ = (¢;);en of symbols 0,1, ..., K —1 with the property
fi(x) € N,, for i € N.
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Let Sk :={0,1,...,K —1}2, %% :={0,1,..., K — 1}N. Sk, ¥F are topological
spaces with the Tichonov topology. On Y g, EJ[( we have the shift map o given by

(0(c)i = cit1-

Let A = [;] be a K x K-matrix, with nonnegative elements (a;; € Ry U {0} for
i,5=0,1,...,K —1). We define ¥4 C Sk and X} C % by

ZA = {C = (Ci)iGZ | Qeiciyr > 0}7 (13)
oh ={c=(c)ien | ey, >0} (14)

Obviously X%, ¥4 are invariant under o.

Let f be a TS-map. To relate the dynamics of f on Inv(N, f) with shift dynamics
on X} we introduce the transition matriz of f denoted by A(f).

We define A(f);j, wherei,j =0,1,...,K —1 by

A(f)i; = 1, if By < Nj < By or By > Nj > Ep)
E 0, otherwise.

It easy easy to see that A(f);; # 0, if N; lays between the images of vertical edges
of N; or in other words if f(IV;) covers N; horizontally (we deform the image by
the homotopies h; if necessary).

For i € N we define the map m; : Inv(NV, f) — {0,1,..., K} given by m;(z) = j iff
fi(z) € N;. Now we define the map 7 : Inv(N, f) = S by (z) := (7;(2))ien-
The map 7 assigns to the point = the indices of sets N; which its trajectory goes
through. It is easy to see that we have

mof=ocom. (15)

If f is a homeomorphism then the definition of m; can be extended to all integers
and in this case the domain of 7 is Y.

Obviously the semi-conjugacy (15) alone is not a sign of complicated dynamics.
It may happen that the set 7 (Inv(V, f)) is finite or even empty. The dynamics is
complicated if 7w(Inv (N, f)) is infinite.

Definition 2. Let c € Sf (c € Sk ). We will say that c is admissible for f in N
if there exists . € N such that f'(z.) € N, fori € N (Z). If c is periodic we
additionally require that x. is a periodic point with the same principal period as c.

If Z C E}; (Z C Xk ) we will say that Z is admissible for f in N if every sequence
in Z is admissible for f in N.

The following theorem, proved in [Z97a], gives the characterization of the set of
admissible sequences for TS-maps.
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Theorem 1. Let f be a TS-map. Then EZ(f) C w(Inv(N, f)). The preimage of

any periodic sequence from Ej]_(f) contains periodic points of f. If we additionally
suppose that f is a homeomorphism then ¥ 4(y) C w(Inv(N, f)).

Results similar to the theorem above, but without the existence of periodic points,
can be found also in [MM2] and [E89).

2 TS-map structure for the Lorenz system

In this section we describe an application of theorem 1 to the case when the sets NV;
are non-disjoint. This is the situation encountered by us in the Lorenz equations
(see next section).

Let us fix u,d € R, u > d and two sequences (ao;), (a1;) with elements ay; €
RU{—o00,00} fori = —1,0,1,2,3,4and k = 0, 1, such that for fixed & the following

conditions hold aj,—1 = —o00 < ago < ag1 < ag2 < ag3 < aps = 0o. Let us
define

Niei = [ak2i,6k2i41] X [d,u], for i=0,1, (16)

Eri = (ar2i—1,ar2) X [d,u], for i=0,1,2, (17)

N := NpoUNy, for k=0,1, (18)

N := NyUDNy, (19)

E, = EyUEg UE), (20)

E := EyUE;. (21)

Obviously for fixed k the sets Ny; are disjoint, but it may happen that for example
NOi n Nli ;é w

Let D be an open set, N C D and f : D — R? be a continuous map. Suppose
that the following conditions hold (compare Fig. 3 in the next section)

f(N) Cint(EUN), (22)
f(L(Noo)) C Err,  f(R(Noo)) C Eno, (23)
f(L(No1)) C Ero, f(R(No1)) C Erg, (24)
f(L(N1p)) C Eoo, f(R(N1o)) C Eoe, (25)
f(L(N11)) C Eoo,  f(R(N11)) C Eo2 (26)

It should be noted that in the above conditions assumptions concerning the images
of Ny; are expressed using the sets Fy_y, ;.

Let M > 0 be a real number. We define

Noi = Noi, (27)
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Ey; = Ey, (28)
Ny = Nu+ (M,0), (29)
Ey = Ey+(M,0), (30)
Ny = NioU Np, (31)
N := NyUN,. (32)

We define f : N — R? by

fz) = f(x) + (M,0) forxe J\:fo,

' f(z) — (M,0) for x € Ny.

From compactness of N and continuity of f it follows that there exists M such
that

Non Ny =0, (34)

f(Ne) NNy =0, for k=0,1. (35)

We fix such M. Hence from conditions (22-26) we get

f(N) cint(EU N), (36)
F(L(Noo)) C By, F(R(Noo)) C Ei s, (37)
fL(Non)) C EronEoz, f(R(Non)) C Eyy, (38)
F(L(N1 ) C Egp, FR(N1)) C By N Eyp, (39)
F(L(N11)) C Ego, F(R(N1,1)) C Eos N Erg (40)

We will treat the indices of the sets Ni; as binary expansions so 00 corresponds to
0,01 to 1,10 to 2 and 11 to 3. With this convention we see that f is a TS-map

with a transition matrix A(f) given by

0, 0, 1, 1
. 0, 0, 1, 1
AN =10 1 0 o
1, 0, 0, 0

’ ’

+

AG) is admissible

From theorem 1 applied to the map f it follows that the set ¥
for the map f . Let us observe that

A(f) =

= -0 O
——_0 O

O O ==
OO ==

The following lemma, follows from the form of the square of transition matrix of f
and the condition (35).
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Lemma 2. The set {00,01} U {10,11}" is admissible for f>.

There is an obvious connection between f2 and f2. From the construction of f it
follows immediately that

l’ENg,f(l’)ENl IHZBEN(),f(iE) ENl, (41)
f2(z) = f*(2), itz € No,  flx) € N1. (42)

Similar statements with obvious modifications hold when we exchange indices 0
and 1 in the above conditions.

From lemma 2 and conditions (41), (42) we obtain

Theorem 3. Let f and sets Ny;, Ey; be as above and conditions (36-40) are
satisfied. Then the set {00,01}N = XF is admissible for 2 in No = (Ngo U Noy)-

3 Chaos in the Lorenz equations

The Lorenz equations are given by [L]

& = S(y—il?),
Yy =rr—y-—uz, (43)
z  =wy-—qz,

where s = 10, r = 28, ¢ = 8/3.

We consider a transversal plane ¥ = {(z,y,z) € R*: 2 = r — 1}. This a standard
choice for the Poincaré section. Let P be a Poincaré map generated on the plane
¥, i.e., for x € ¥ by P(x) we denote the point at which the trajectory based at x
intersects X for the first time in the specified direction.

We have found for P the structure described in the previous section. To express
this structure we introduce the new rotated coordinates on the plane z =r — 1

Z:=xcosf —ysind, (44)
yi=zx

sinf + y cos b, (45)

where the angle § = 70° (§ = 27(70/360) in radians). The line Z = 0 is very
close to the intersection of the stable manifold of the origin (0,0, 0) with the plane
z =r — 1 in the region of interest.

Let us set app = —1.6, apr = —0.4, ap2 = 0.4, aps = ]..6, aip = —3.3, ail = —0.9,
ais = 0.9, a13 = 3.3, d = —6, u = 6. We define sets Ny;, Fy; as in the previous
section. Sets Nyi; are shown in the Fig. 2. Despite of the change of coordinates
(44,45) we will use the notion of the left, right, vertical and horizontal edges with
respect to the old coordinates in order to be consistent with the formulation of
theorems in sections 1 and 2.
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Figure 2: Rectangles Nyg, No1, N1p and N1 on the transversal plane. Ny and
Np1 are printed with solid lines, while N1g and N;; with dashed ones

In computer simulations we have integrated equations (43) using the fourth-order
Runge-Kutta algorithm with the time step h = 0.005. In Fig. 3 we show the
images of borders of Ni; under Poincaré map obtained by numerical integration.
The image of Nyg covers N1; horizontally and similarly the image of Ny; covers Vg
(compare Fig. 3a). Both images of N1g and Ny; covers Nog U No; horizontally (see
Fig. 3b). These results indicate that complex behavior of the system and existence
of infinitely many periodic orbits is possible. The next step is to prove strictly this
observation. In order to perform this task we have developed a computer program
using procedures for interval computations from the BIAS and PROFIL packages

With computer assistance we have proved the following lemma.

Lemma 4. The Poincare map P is well defined and continuous on N. The con-
ditions (22-26) hold for P.

Proof of this lemma will be given in the next section. Combining the above lemma

and theorem 3 we obtain main theorem of this paper.

Theorem 5. For all parameter values in a sufficiently small neighborhood of
(s,r,q) = (10,28,8/3) there exists a transversal section I C {z = 27} such that
the Poincaré map P induced by (43) is well defined and continuous on I. There
exists continuous surjective map m : Inv(I,P?) — Xy, such that

roP?=cgor.

The preimage of any periodic sequence from Yo contains periodic points of P2.
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Figure 3: Images of borders of Ngg, No1, N19p and Ni; on the transversal plane
— computer simulations, (a) images of edges of Ngg and Ny, one can clearly see
that image of Nyg covers Ni; horizontally and symmetrically the image of Ny
covers Ny, (b) images of edges of N1g and N1, both images covers Nog and Noy
horizontally

Proof. From continuous dependence of the solutions of ODE’s on parameters it
follows easily that lemma 4 holds in some neighborhood U of (s, r, q) = (10,28,8/3)
in the parameter space. We fix U and we consider the Poincaré map P generated
by (43) for parameters values from U.

We set, I := Inv(Ngo U No1, P2). We define the map 7 : I — 35 by
mi(x) = 0, if P?(x) € Noo, (46)
mi(x) = 1, if P¥(x) € No;. (47)
From theorem 3 we obtain that every periodic sequence from Y- is admissible

for P in Nyp U Np1. Now from density of the periodic sequences in Y2 we get
w(I) = X,. O

4 Details of computer calculations

In our computer program we have used the procedures for interval computations
from BIAS and PROFIL packages [K] prepared by Olaf Kniippel from Technical
University Hamburg-Harburg.

In this section we present the detailed description of the procedure for computation
of the image of a rectangle under Poincaré map and then we will describe the proof
of lemma 4.

The whole computer program used during the computer-assisted proof can be
found at:

<http://galaxy.uci.agh.edu.pl/~galias/int.html>.
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4.1 One integration step

First we describe the procedure NextPointExactTaylor4 for computation of the
image of an Euclidean ball B(Py, &) under dynamical system after time h, where
P, is a three-dimensional interval vector and &g is a positive real value. The
procedure finds a three-dimensional interval vector P, and a real value €5 such that
the image of the ball B(P,e) after time h is enclosed within the ball B(Pz,e2)

(p(B(Po,Eo),h) C B(Pg,é‘g). (48)

For that task the fourth-order Taylor integration formula and the logarithmic norm
are used. They are described in the following subsections.

4.1.1 Procedure for computation of (P, [0, h])

Before we present the implementation of the Taylor integration formula and the
computation of logarithmic norm let us describe the procedure GetTraj(P, Pr,h),
which is used several times in the program. Its code is given in the Appendix.
This procedure computes the three-dimensional interval Pr containing all the tra-
jectories starting from the three-dimensional interval vector P after time ¢ € [0, h].
The procedure is based on the following lemma:

Lemma 6. Let y(0) be a set of initial conditions. Let Y be a convex subset of
R3, ¢ be a positive real number and let us define Yz := B(Y, ). By Hull(A) we will
denote the smallest closed ball in the max-norm containing the set A. Let

[0, h]?

2

where all operations on the right side are of set type, for example £f(Y;) = {x :x =
f(Y)a for somey € 1/5} and [Oah] f(Y(O)) = {t "X:ite [O,h],X € f(Y(O))}

If X CY then y([0,h]) := ¢(y(0),[0,R]) C X.

X =y(0) +[0,n] - £(y(0)) + Hull(f'(Y2)£(Y2)),

Proof. Let t = inf{s:y(s) ¢ X}. We will show that ¢t > h. If ¢ < h then there exists
0 > Osuch that y(s) € Y. fort < s < t¢+6 < h. From the first order Taylor formula
for all s € [t,t+6] we have fori = 1,2,3 y;(s) = y;(0)+s£;(y(0))+ 32 (£ ()£ (y))s,
where y € Y. depends on s and 4. It follows that y(s) € X for all s € [¢t,¢ + 4].
Hence y(s) € X for all s € [0,¢ + 6] and inf{s:y(s) € X} >t+6 >t which is a
contradiction. O

In the procedure GetTraj(P, Pr,h) we first choose Y. Then using the first order
Taylor formula (y(t + h) = y + hy'(t) + $h%y"(t + Ah)) we compute image Pr
of P after time [0, h], where y" is evaluated over the set Y. D Y. If the image
is enclosed in Y then Pr is returned. Otherwise we choose a bigger set ¥ and
repeat the computations. From the previous lemma it follows that the following
proposition is true.

Proposition 1. If GetTraj(P, Pr,h) returns TRUE then (P, [0,h]) C Pr.
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4.1.2 Taylor integration method

For integration of the equation (43) the fourth-order Taylor formula has been used.
We have also tested the fourth-order Runge-Kutta formula but the computation
time was longer due to greater number of coefficients in the exact formula for
the error term. Let us denote by y(t) = (y1(t),y2(t),y3(t))? the solution of the
equation (43). Let us recall that the standard fourth-order Taylor integration
method is based on the expansion

1 1 1 1
it 1) = a(t) +hyi(0) + Sy! () + W (1) + o h (Y (0 + g h° ™ (t+ Aih),
(19)

where i = 1,2,3 and \; € [0,1] for ¢ = 1,2,3. Using the equation y' = f(y) we
can easily compute y*) in terms of f, f' and f”. For the Lorenz system

-S S 0 hy
f'ly) h=| R—ys -1 —m hy |, (50)
Y2 n  —Q hs

where y = (y1,y2,y3)” and h = (hy, ha, h3)”. The second derivative f”(y) does
not depend on y and can be computed as

0
f”(Y) ’ (h17h2) = —hi1hsy — hgi1hia
hi1has + haihio

; (51)

where h1 = (h11;h21;h31) and h2 = (h127h227h32). As the left hand f(y) of the
equation (43) does not contain terms of order greater than two it is clear that
f)) = 0 for k> 2. f, £’ and £’ are computed within the program using procedures
LeftSide, FPrim and FBis given in the Appendix. FBis2 is the FBis procedure
for the case of two equal arguments.

Using the chain rule of differentiation we can obtain formulas for y*). In the
following we write f, ' and £ instead of £(y(t)), £'(y(t)) and £ (y(t)) respectively.

y't) = fy@)=f,
d df dy
") = —=fy®)) =—=>Ft)=¢) =f'(yt)f(yt) =f'f
y' () ¥ (®) = = (y(#) (1) = £y (©)E(y () :
ylll(t) — f”ﬁ‘—'—f’f’f,
yM () = 3f'f'ff + £ + £'PFF,
yO () = Af'EE 4+ AEEE'E + 3EVEEE + 3EEHE + £/ 4 £/ fE'E

The formula we use for computation of y(t + h) reads

h? h? h*

y(t+h) = y(t)+hf+ 7f’f+ n (f'fF+££'f)+ 24 Bt E+ '+ ') +e(y, h),

(52)
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where f, ' and f" stands for f(y(¢)), f'(y(t)) and f’(y(t)). The error e(y,h)
introduced by omitting the higher order terms is equal to

h5

e(Y: h) = Ton

g (4R 3 3 E O E P, (53)

where this time f, ' and f" are computed at points y;(t + A;h) with \; € [0,1].

4.1.3 Logarithmic norm

The procedure LogNorm(P, L) computes the upper bound L of logarithmic norm
of the matrix f'(y) over the three-dimensional interval vector P. Let us recall that
the Logarithmic norm [HNW] of matrix Q is defined by

m(Q) — ||[+hQ||_]‘

= 4
h—0,h>0 h (54)

For the Euclidean norm on the right side of the above equation the logarithmic
norm of ) can be obtained using the formula

1
m(Q) = largest eigenvalue of the matrix §(QT + Q). (55)

In the procedure LogNorm(P,L) we first compute the coefficients of the character-
istic equation of the matrix (f'(P) + f'(P)?)/2. Then using the Cardano formula
we find roots of the characteristic equation and we choose the largest one (the
roots are real as the matrix (f'(P) + f'(P)7)/2 is symmetric). If for some reason
this computation is not possible then LogNorm returns FALSE. If the procedure
returns TRUE then L is the upper bound of the logarithmic norm over the set P.

4.1.4 Procedure NextPointExactTaylor4d

The procedure NextPointExactTaylord(Fy,eo, P>,c2) computes the image of a
ball B(Fy,go) under dynamical system after time h. For given 3D interval vector
P, and real value g9 the procedure finds a 3D interval vector P, and a real value
€2 such that the image of the ball B(Pp, o) after time h is enclosed within the ball
B(P,e2)

(p(B(Po,Eo),h) C B(Pg,é‘g). (56)

If the procedure is not capable to compute the image it returns FALSE. In the
opposite case it computes P, and €2 and returns TRUE. The procedure consists of
two parts.

In the first part the image of Py after time h is computed using the fourth-order
Taylor integration formula with exact computation of the error term. We first
calculate P» according to equation (52) without the last term e(y, h). During this
computation f, f’ and f" are computed over the set Py. Then using the procedure
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GetTraj(Fo,h) we find the set Y, containing trajectories starting from P, after
time t € [0, h]:
©(FPo,[0,h]) C Y.

Then we compute e(Fy, h) using equation (53), where f, £’ and f" are computed
over Y. Finally we modify P, by adding the error term and we obtain a three-
dimensional interval vector P, containing the image of Py after time h, i.e.,

(p(Po,h) - P2.

In the second part of the procedure we compute the change of the radius of the
Euclidean ball during evolution after time h. This computation is based on the
following theorem.

Theorem 7 ([HNW]). Suppose that v(t) and w(t) are solutions of the system of
differential equations y' = £(y) satisfying ||v(to) —w(to)|| < €. Let us also assume
that the logarithmic norm m(f'(y)) < L on the convez set containing trajectories
{v(t):t € [to,t1]} and {w(t):t € [to,t1]}. Then fort € [to,t1] we have the estimate

|lw(t) — v(t)]| < eellt=to), (57)

In order to use the above theorem we have to compute the logarithmic norm over
the convex set containing all the trajectories starting from B(P,eo) after time
[0,h]. In order to find such a convex set we call the procedure GetTraj with
the parameters B(Pp, &) and h obtaining Y D ¢(B(Pp,&0),h) (as Y is an interval
vector it is obviously convex). Then we call the procedure LogNorm(Y, L) obtaining
the upper bound L of the logarithmic norm of the matrix f'(y) over the set Y and
finally we increase the size of the ball according to the following formula:

€2 = goel M. (58)

From the considerations presented above it follows that

Proposition 2. If the procedure NextPointExactTaylord(FPy,co, P, e2) returns
TRUE then
¢(B(Fo,e0), h) C B(P2,¢€2).

In order to minimize wrapping effect the procedure NextPointExactTaylor4 is
called with parameter Py being a three-dimensional point interval.

Although P, is a point interval P is an interval vector with nonzero diameter
due to the existence of the error term in the integration formula and computation
errors. Before calling the procedure NextPointExactTaylor4 again the interval
P, is shrinked to the point and €2 is increased appropriately. In this way we do
not control the size of error by the interval arithmetic methods. Instead we use
explicitly the Lipschitz constant obtained using the logarithmic Euclidean norm.
Such action reduces the wrapping effect, which would cause very quick growth of
computational errors in case of using interval arithmetic alone.
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4.1.5 Reduction of wrapping effect with logarithmic norm

We have also tested other possibilities of computation of the image of an interval
vector under dynamical system.

The first possibility tested was the one without logarithmic norm. This solution
appeared to be much worse. Due to the wrapping effect the diameter of the interval
grows much quicker than in the case when we use the logarithmic norm.

In order to show how big the difference is let us denote by d; the diameter of the
rectangle which image under Poincaré map we compute and by ds the diameter
of the rectangle returned by the procedure for evaluation of the Poincaré map.
When we used logarithmic norm the quotient dy/d; was between 70 and 490 for
di = 0.005, while in the second case it was greater then 9x 10° for d; = 5x 1079 (for
greater d; we were even not able to evaluate the Poincaré map). With logarithmic
norm the computation time was approximately 7 hours. It was estimated to be
more than 107 times longer without logarithmic norm.

We have also tried to use the logarithmic norm based on maximum norm instead
of Euclidean norm. In this case the quotient d»/d; was approximately 1000 times
greater than in the case of logarithmic norm based on Euclidean norm.

Computation method dy/dy Computation time
logarithmic norm based on Euclidean norm | 70 — 490 | 7h

logarithmic norm based on maximum norm | > 10° > 10*h

without logarithmic norm > 10° > 10%h

Table 1: Comparison of computation time for different methods

These results show that without logarithmic norm based on Euclidean norm we
would not be able to prove the assumptions about Poincaré map (compare also
table 1).

4.2 Procedure for the Poincaré map

Once we have the procedure for computation of one integration step we can con-
struct procedure for the whole Poincaré map P. The procedure PoincFun com-
putes image of the two-dimensional interval Pyg,¢ contained in the transversal
plane under Poincaré map. It returns a two-dimensional interval Penq such that

P(Pstart) - Pend-

During the procedure we perform subsequent integration steps calling procedure
NextPointExactTaylor4 obtaining balls B(P,, €,) containing images ¢( Pstart, 1)
of the initial rectangle after h, 2h,.... Initially we assign Pyar to Py and set
€0 = 0 (hence B(Py,e0) = Pyart). Before every integration step we shrink the
three-dimensional interval vector P, to the point interval vector and increase &,
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appropriately. This task is performed by the procedure DecPIncEpsilon (see
Appendix), which finds a point interval vector P, and a real €, such that

B(Pn,old: 5n,01d) C B(Pn: 5n)-

This action is necessary in order to avoid the wrapping effect.

The result of integration is a sequence of pairs P,, g, fulfilling conditions
@(B(Pnagn)a h) - B(Pn+175n+1)7 Pstart = B(PO;EO)-

A trajectory of a point in Noy U Ny intersects the transversal plane twice before
we can evaluate the Poincaré map. The first intersection is in a different direction.
During the procedure the position of the trajectory is constantly monitored. As
the image of the initial rectangle is within the ball B(P,,¢,) an intersection is
not finished until the whole ball lies on the proper side of the transversal plane
{z = r—1}. From the beginning of the procedure we check for the first intersection.
If B(Py,en) C {(x,y,2):2 > r — 1} the boolean variable FirstSection is set to
TRUE, which means that the first intersection has already been finished. Then we
search for the beginning of the second section. We look for the smallest n such
that B(P,,e) N {(z,y,2):2 < r — 1} # 0. At this moment we start to compute
the interval vector PPoincFull containing the image of the initial rectangle under
Poincaré map. We assign it to be PPoincFull = P,_;. In every iteration the
three-dimensional interval PPoincFull is increased, it becomes a convex hull of
the previous value of PPoincFull and the set ¢(B(P,_1,en—1),[0, h]). Integration
is continued until the second intersection with the transversal plane is finished.
This corresponds to the first integration step for which trajectory lies completely
after transversal plane (B(P,,e,) C {z <r —1}).

The image of the initial rectangle under Poincaré map is contained in the projection
of PPoincFull to the transversal plane.

In the course of the procedure we constantly check the transversality condition in
order to ensure that the trajectory does not intersect the transversal plane more
than twice before the image under Poincaré map is evaluated and that intersec-
tions with transversal plane are really transversal. In fact it should be checked
only three times. First time at the beginning of the procedure to ensure that
the trajectory enters the half-space {z < r — 1} (the condition is 2'(Psart) < 0).
The second time it should be checked during the first intersection: for each n
such that ©(B(Py,en),[0,h]) N {(z,y,2):2 = r — 1} # B one should check if
2'(@(B(Py,€n),[0,h])) > 0. The third time it should be checked during the second
intersection. This time we should check if z'(¢(B(P,,ey),[0,h])) < 0. In order
to simplify the procedure and to shorten the computation time we perform the
transversality check in the procedure NextPointExactTaylor4. For every n such
that
‘P(B(PThEn)a [Oah]) n {(m,y,z):z =Tr-—= 1} 7é [2)
we check whether
2 (9(B(P, e), [0, ) # 0.
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If this condition does not hold then NextPointExactTaylor4 returns FALSE. From
the discussion presented above it follows that

Proposition 3. If the procedure PoincFun(Pspart, Pend) returns TRUE then

4.3

P(Pstart) - Pend-

Computer assisted proof

Using the procedure PoincFun we have performed a computer-assisted proof of
the following theorem.

Theorem 8. For all parameter values in a sufficiently small neighborhood of
(S,R,Q) = (10,28,8/3)

1.

2.

there exists a continuous Poincaré map defined on Noo U Nig,

images of ‘horizontal’ edges H(Noo U N1g) of Noo and Nig lie in the interior
of NUE i.e.,

. P(H(Noo U NIO)) C int(N U E),

. P(Ngo) covers Ny1 horizontally and P(Nyg) covers Nog U N1ig horizontally,

i.e., images of ‘vertical’ edges of Noo and Nig fulfill the following conditions

lies on the left side of N1 i.e., P(L(Nop)) C E11,
lies on the right side of Ni; i.e., P(R(Noo)) C E12,
lies on the left side of Nog i.e., P(L(N1p)) C Eoo,
lies on the right side of Noy i.e., P(R(Nyo)) C Eoz.

Proof. During the proof we have used the procedure PoincFun for evaluation of
the Poincaré map.

1.

In the first step the set Ngo U Nip was covered by 56970 rectangles. We
computed images of these rectangles under Poincaré map proving in this
way the existence of continuous Poincaré map.

‘Horizontal’ edges of Ngg U N9 were covered by 70 rectangles each. We
proved that images of all of these rectangles lie within the strip int(N U E).
In Fig. 4.a one can see the rectangles covering the bottom horizontal edge
of Ngo U N1 and the rectangles containing their images under Poincaré map
computed with the procedure PoincFun.
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Ty Ty
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Figure 4: Images of edges of N;; under Poincaré map — exact computations,

(a) 70 rectangles covering the bottom vertical edge of Nog U N1p and their images
computed with the procedure PoincFun ( it has been checked that the output
rectangles lie in int(N U E), (b) 320 rectangles covering L(Nyp) and their images
computed with the procedure PoincFun (it has been checked that the output
rectangles lie in the set Fos)

3. ‘Vertical” edges L(Ngo), R(Noo), L(N1g) and R(N1g) were covered by 351,
7744, 320 and 1177 rectangles respectively. For each of these rectangles the
procedure PoincFun was called. We proved that images of these rectangles
are included within appropriate subsets of £ U N. An example of covering
of an horizontal edge is shown in Fig. 4.b. In this figure one the covering of
L(Nyo) with rectangles and images of these rectangles under Poincaré map
computed with the procedure PoincFun are shown. One can see that output
rectangles lie in Ejys,.

O

In the first part of the proof we have used the time step h = 0.01, while in the
second and third parts we have used A = 0.003. In the first part we have used
greater time step as we were not interested in the size of the rectangles returned
by the procedure and hence we could accept greater errors. The time interval over
which we had to integrate the equations to evaluate the Poincaré map varied from
0.67 to 0.94 for different points within Nog U N19. This corresponds to less then
320 integration steps for the evaluation of the Poincaré map when using the time
step equal to 0.003. The ratio of the size of the output rectangle to the size of the
initial rectangle on which the Poincaré map is evaluated depends on the position
of the initial rectangle and varies from 27 to 530.

All the computations were performed using the double precision — this is the
precision implemented in the BIAS and PROFIL packages. We believe however
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that the accuracy does not have much influence on the performance of the method.
We think that for smaller accuracy (single precision or even less) it would also be
possible to carry out the proof. In this case we would have to divide the sets under
consideration into smaller parts. This would increase the computation time.

The above proof was performed on the Sun Ultra 1 computer, with 167 MHz
clock. The program was compiled with gnu C++ compiler. It took approximately
7 hours to complete the proof.

The above theorem is not strictly equivalent to Lemma 4. Instead of proving the
condition P(NgpU N1p) C int(N U E) we only proved this condition for the border,
namely P(bd(Npo U N1p)) C int(N U E) with an additional condition that the
Poincaré map P is defined on the whole Ngg U N1g. From that one can prove that
condition P(Ngg U N1g) C int(N U E) holds (compare proof of lemma 4 below).
Such a proceeding reduces the computational time considerably. When we check
only the existence of the Poincaré map we do not have to worry about the size
of the images of rectangles under Poincaré map. Hence we can choose bigger
rectangles covering Ngg U N1g. During the proof of the first part of theorem 8 we
needed 56970 rectangles. If we would check the stronger condition we would need
approximately 10 times more rectangles, which would increase the computation
time.

Proof of lemma 4. Due to symmetry of the problem from theorem 8 it follows that
the Poincaré map P is well defined and continuous on N and conditions (23-26)
are satisfied. It remains to show that from

P(bd(Ng;)) C int(N U E), (59)
for k,i = 0,1 the condition (22) follows.

Let us define W := int(N U E). The set W is the horizontal strip i.e. W =
(—00,00) X (d,u). From the general theory of differential equations it follows
that the Poincaré map P is a homeomorphism onto the image. From the Jordan-
Brouwer Theorem [Gr, Th. 18.6, 18.7, 18.8] the set P(int/Ny;) is open and

bd (P (intNy;)) = P(bd(Ng:)). (60)

Now suppose that for some k, i the set P(Ng;) is not contained in W. From (59)
and definition of W it follows that there exists x € int(N;) such that P(x)) ¢ W.
Let P(x) = (z,y). We may assume that y > u (i.e., P(x) is above the strip W).
Now consider the half-ray H = {P(x) + (0,t), t€ R;}.

Obviously H N P(intNy;) # § and H is unbounded. So H is not contained in
P(intN;) and from connectedness of H and (60) it follows that

HNP(bd(Ny)) # 0. (61)

From (59) and (61) it follows that H N W # (). But by construction H N W = 0.
Hence we get a contradiction. Thus (22) holds. O
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5 Discussion of the relevance of the method in the
computer assisted proofs

In the previous section we have proved the existence of symbolic dynamics for the
second iterate of the Poincare map P by rigorous numerical calculation of P, but
not the second iterate. Another method to obtain this result would be to calculate
P2 and then to apply the theorem 1 directly. Both approaches to this proof look
almost equivalent, but the second one is much more time-consuming. We want
now to explain this in detail.

Method 1. We have to calculate P on the sets Ngg, No1, N1, N11 with error less
then €.

Method 2. We have to calculate P2 on the sets Ngo, Noi only with error less then
€9.

Below we define some quantities for both methods, we will index them by m = 1,2
for the method 1 and 2 respectively.

To calculate the image of the edges of Ny; or the image of the entire set Ni; we
cover it by the finite number of segments or rectangles with the size §,, given
by dm = €m/Lm, where Ly, is the Lipschitz constant for the map P™. In the
real algorithm we calculate the Lipschitz constants locally, but for our heuristic
discussion we will assume that L,, is constant. The number of rectangles p,,
covering edges of Ny; is given by p,, = dpn/0m = dmLu/€m, where d,, is the
total length of edges of Ny; required in the method (for m = 1 the domain of
calculations is bigger).

Now let t,, be a processor time required for the calculation of P™(x), for m = 1, 2.
This quantity depends on the point x, but for convenience we will assume it is
constant. The total time T, required to calculate the image of the edges of Ng;
is given by the formula

Let us assume that Ly = L%, ty = 2t1, € = €3, do = 2d;. These assumptions are
nearly fulfilled in our case. Using these assumptions we obtain

Ty/Ty = Ly

for the calculation of image of edges.

In our calculations L; € (70,500). This shows clearly the advantage of the first
method.

Other important issues which differ our method from the method used by Mis-
chaikow and Mrozek are following:
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e we are able to reduce a significant part of calculations to the boundary of the
sets under considerations (this reduce computation time almost 10 times),
see sec. 4.3,

e we use Euclidean logarithmic norm, which is apparently harder to compute
than the logarithmic norms based on max or sum (reduction factor of the
order 10°), see sec. 4.1.5, table 1,

e instead of Runge-Kutta method we use fourth-order Taylor method which
produces twice smaller errors, see sec. 4.1.2,

e we use locally calculated Lipschitz constants and error bounds.

At this point one may wonder how can Mischaikow and Mrozek perform theirs
calculations in a reasonable time, as they do not do any of the things listed above.
The main point is that they invented method of intermediate sections, which
is in spirit very close to the idea of the double cover described above and give
similar reduction factor. They used 23 intermediate sections, for theirs choice of
parameters to show that there is a topological horseshoe for the Poincare map.
But for the classical parameter values they are unable to show that for the second
iterate of Poincare map in a reasonable time.

We believe that further reduction of computation time is possible. It appears that
substantial reduction of computation may be obtained by

e the use of Mischaikow and Mrozek intermediate section, but the evolution
between those sections should be rather followed by our methods, which use
the better norm for the problem,

e the enclosure of solution of ODE’s can be probably better calculated using
Lohner algorithm [Lo],

e the choice of the initial sets can be optimized and the domains for TS-maps
can be generated by computer, as the work of Szymczak [Sz] shows.

The points listed above will obviously complicate considerably our simple numer-
ical algorithms, which are relatively easy to implement. One should also have in
mind, that an elaborate algorithm which theoretically gives better estimates can
be so time consuming, that this can make it unusable. This is for example the
case of higher order (> 4) Runge-Kutta or Taylor integration methods.

6 Appendix

6.1 General remarks

In the PROFIL package the following data types are defined: REAL, INTERVAL,
INTERVAL_VECTOR, INTERVAL MATRIX. The REAL data type is defined as the type
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Operation Return type Description

Inf( a ) REAL lower bound of a

Sup( a ) REAL upper bound of a

Hull( r ) INTERVAL point interval [r,r]

Hull( x,y ) INTERVAL convex hull of x and y

Succ( a ) INTERVAL smallest interval in which a
is contained in the inner

Mid( a ) REAL midpoint of a

Diam( a ) REAL diameter of a

Sqr( a ) INTERVAL square of a

Intersection( a,b,c ) INT if b and c intersect 1 is re-

turned and a contains the
intersection, otherwise 0 is

returned

x <= a returns TRUE if x is con-
tained in a

x < a returns TRUE if x is con-
tained in the interior of a

Norm( iv ) INTERVAL computes the 2-norm of iv

Table 2: Operations and procedures from BIAS and PROFIL packages used in
our program. r is of type REAL, x, y are of type REAL or INTERVAL, a, b and c are
of type INTERVAL, iv is of type INTERVAL VECTOR

double, the INTERVAL data type is a structure composed of two REALs being
the lower and upper bound of the interval. The INTERVAL_VECTOR is a vector
of INTERVALs (if iv is INTERVAL_VECTOR then iv (i) denoted the i*" element of iv.
The INTERVAL MATIRX is a matrix of INTERVALs. In the BIAS package all the basic
operations on the types specified above are implemented. This includes addition,
subtraction, multiplication and division. For example expression like C = A + B,
where A, B and C are intervals is implemented in such a way that

{a+bac Abe B} CC.
In the table 2 we describe several procedures from the BIAS and PROFIL packages,

which are used throughout the program. Along with the procedure name we give
the data type it returns and a short description.

6.2 Procedures for computation of the left side of the Lorenz
equation, its first and second derivatives

The procedures below are used for the computation of f(y), f'(y)-h, f(y)-(h;, hs)
and f'(y) - (h,h).
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INTERVAL_VECTOR LeftSide( INTERVAL_VECTOR & Y ){
/* returns Left side of Lorenz equation */
INTERVAL_VECTOR LS(3);

LSC1) =S (Y(2)-Y(1));
LSC2) =R *Y(1)-Y(2)-Y(1)*Y(3);
LSC3)=Y(1)*Y(2)-Q*Y(3);

return( LS );
}

INTERVAL_VECTOR FPrim( INTERVAL_VECTOR & Y, INTERVAL_VECTOR & H ){
INTERVAL_VECTOR FP(3);
/* returns first derivative of the left side of Lorenz system
at point Y on vector H */
FP( 1) = -S *H(1) + S *H(2) ;
FP( 2 ) (R-Y(3))*H(1) 1 *H(2) - Y(1)*H(3);
FP( 3 ) = Y(2) *H(1) + Y(D*H(2) - Q@ *H(3);
return( FP );
X

INTERVAL_VECTOR FBis( INTERVAL_VECTOR & H1, INTERVAL_VECTOR & H2 ){
INTERVAL_VECTOR FP(3);
/* returns second derivative of the left side of Lorenz system
on vectors H1, H2 (F’’(Y) does not depend on Y) */
FP( 1) =0 ;

FP(2)=-H1(1) *H2(3) - HI(3 ) = H2( 1) ;
FP( 3 ) = H1( 1) « H2( 2 ) + H1( 2 ) = H2( 1) ;
return( FP );

}

INTERVAL_VECTOR FBis2( INTERVAL_VECTOR & H ){
INTERVAL_VECTOR FP(3);
/* returns second derivative of the left side of Lorenz system
on vectors H1=H2=H (F’’(Y) does not depend on Y) */
FP( 1) =0 ;

FP(2)=-2xH(1) *H(3) ;
FP(3)= 2xH(1) *H(2) ;
return( FP );

The following procedure computes interval vector PT containing trajectory starting
from interval vector P, after time [0, h].

BOOL GetTraj( INTERVAL_VECTOR P, INTERVAL_VECTOR & PT,
INTERVAL h ){
INTERVAL_VECTOR EpsVectVar( 3 );
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INTERVAL hfull,h2full2;
INTERVAL_VECTOR LSC 3 ),Y( 3 ),YEps( 3 );

/* EpsVect is an 3D INTERVAL_VECTOR defined as:
EpsVect = 0.005 * [-1,1]1x[-1,1]1x[-1,1] */
EpsVectVar = EpsVect;
hfull = Hull( O,h );
h2full2 = Sqr( Hull( O,h ) ) / 2;
LS = LeftSide( P );
while (TRUE) {
Y = P + hfull * LS + EpsVectVar ;
/* make YEps a little bigger than Y */
YEps = Succ( Y ) ;
PT = P + hfull * LS + h2full2 * FPrim( YEps,LeftSide( YEps ) );
/* PT < Y returns TRUE if every component of PT is contained
in the interior of the corresponding component of Y:
PT subset int(Y) */
if ( PT < Y ) return( TRUE );
EpsVectVar *= 2;
if ( Max( Sup( EpsVectVar ) ) > 1000 ) return( FALSE );

The following procedure increases Epsilon by the radius of the interval vector P
while P is shrinked to the point. New values of P and Epsilon are chosen in such
a way that B(P01ld, Epsilon01d) C B(P,Epsilon) and P is a point.

void DecPIncEpsilon( INTERVAL_VECTOR & P, REAL & Epsilon ){
INTERVAL Eps;
INTERVAL_VECTOR PMid( 3 );
/* P is shrinked to the point and Epsilon increased in such
a way that B(P0ld,Epsilon0ld) \subset B(P,Epsilon) */

/* Mid( P ) returns the midpoint of the interval vector P */
PMid = Mid( P );

/* Norm( IV ) computes the 2-norm of the INTERVAL_VECTOR IVx*/
Eps = Norm(P - PMid);

Epsilon = Sup(Epsilon + Eps);

P = PMid;

6.3 Procedure for computation of one integration step

BOOL NextPointExactTaylor4( INTERVAL_VECTOR & PO, REAL & EpsilonO,
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INTERVAL_VECTOR & P2, REAL & Epsilon2 ){

INTERVAL_VECTOR Y( 3 ),Err( 3 );

INTERVAL_VECTOR P1( 3 );

INTERVAL TempInt,F3;

BOOL Done;

REAL L,Epsilonl;

INTERVAL_VECTOR F( 3 ),FPF( 3 ),FBFF( 3 ),FPFPF( 3 );
P1 = PO;

Epsilonl = EpsilonO;

/* OneVect is a 3D INTERVAL_VECTOR defined as
OneVect = [-1,1]x[-1,1]x[-1,1] */

/* The Euclidean ball B(P1,Epsilonl) is a subset of
P1 + Epsilon * OneVect */

/* Computation of Y - interval vector containing the trajectory
starting from set P1 + Epsilonl * OneVect after time [0,h] */
if (!'GetTraj(P1 + Epsilonl * OneVect,Y,h)) return( FALSE );

/* Computation of logarithmic norm on this set */
if (!'LogNorm( Y,L )) return( FALSE );

/* Transversality condition --- we check if vector field is
transversal to the Poincare plane on the set Y */
/* procedure Intersection( A,B,C ) returns TRUE if B and C has
nonempty intersection */
if ( Intersection( TempInt,Y( 3 ),PoincValue )){
/* Y( 3 ) and PoincValue has nonempty intersection */
/* LeftSide3( Y ) returns the third component of the
left side of Lorenz equations: z’( Y ) = LeftSide3( Y ) */
F3 = LeftSide3( Y ) ;
/* if vector field is not transversal i.e., 0 is in F3
then return FALSE */
if (0 <=F3) {
printf( "transversality error" )
return( FALSE );
}
}

/* Increasing of the radius of the ball
(according to logarithmic norm) */

Epsilon2 = Sup( Exp( Hull( L ) * h ) * Epsilonl );

/* fourth-order TAYLOR method */



Chaos in the Lorenz equations 27

F = LeftSide( P1 );

FPF = FPrim( P1,F ); /* FPF = F’F x/
FPFPF = FPrim( P1,FPF ); /* FPFPF = F’F’F */
FBFF = FBis2( F ); /* FBFF = F?’FF */

P2 =P1 +h x F + h2xFPF / 2 + h3*( FBFF + FPFPF ) / 6 +
h4x( 3 * FBis( FPF,F ) + FPrim( P1,FBFF ) +
FPrim( P1,FPFPF ) )/24;
/* end of TAYLOR method */

/* Taylor series truncation error */
/* Error = (h"5/120)* (4*f’ £f’ ' ff+4xf7 £ £ ££+3*f7 £ £f 2 f+
RET R R ik v i ik ik i A i L A O L V4
/* This error is computed on Y containing trajectory
starting from set P1 after time [0,h] */
if ('GetTraj( P1,Y,h ) ) return( FALSE );
F = LeftSide( Y );

FPF = FPrim( Y,F ); /* FPF = F’F */
FPFPF = FPrim( Y,FPF ); /* FPFPF = F’F’F */
FBFF = FBis2( F ); /* FBFF = F?’FF */

Err = ( 4 * FBis( F,FBFF ) + 4 * FBis( FPFPF,F ) +
3 * FBis2( FPF ) + 3 * FPrim( Y,FBis( F,FPF ) ) +
FPrim( Y,FPrim( Y,FBFF ) ) +
FPrim( Y,FPrim( Y,FPFPF ) ) ) % h5 / 120;

/* Error addition */

P2 = P2 + Err ;

return( TRUE );

6.4 Procedure for the Poincaré map

The procedure PoincFun finds a 2D interval vector EnP such that P(StP) C EnP.

BOOL PoincFun(INTERVAL_VECTOR & StP, INTERVAL_VECTOR & EnP,
INT SectionType){
/* SectionType - Type of computation of the section */
/* SectionOpt - with optimalization */
/* SectionNoComp - without computation image - just checking if
Poincare map is defined */

#define LogNorm

/* LogNorm defined - size of neighborhood is increased
according to Logarithmic norm, region is the ball
B(P,Epsilon), where P is the point INTERVAL_VECTOR
- better results */
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/* LogNorm undefined - region is the INTERVAL_VECTOR P
-- worse results */

INTERVAL_VECTOR P( 3 ),P2( 3 ),PPP( 3 ),PPoincFull( 3 ),Y( 3 );

REAL Epsilon,Epsilon2;

BOOL FirstSection,SecondSecStart;

BOOL done, 0K;

P2( 1) = StP( 1 );

P2( 2 ) = StP( 2 );

P2( 3 ) = PoincValue;

Epsilon2 = 0;

/* initiate values h=TimeStep,h2=h"2,...,h5=h"5 x*/

h = TimeStep;
h2 = Sqr( h ); h3 = h * h2;
h4 = h2 * h2; h5 = h * h4;

done = FALSE;

0K = TRUE;
FirstSection = FALSE;
SecondSecStart = FALSE;

while ( !done ) {
P = P2;
Epsilon = Epsilon2;

#ifdef LogNorm
/* Increasing Epsilon and shrinking P */
DecPIncEpsilon( P,Epsilon );

#endif

/* next integration step */

if (!NextPointExactTaylor4( P,Epsilon,P2,Epsilon2 )) {
printf ( "NextPoint Error\n" );
done = TRUE;
OK = FALSE;

}

#ifdef LogNorm
/* Increasing Epsilon2 and shrinking P2 to the point */
DecPIncEpsilon( P2,Epsilon2 );

#endif

if ( ( Epsilon2 > 200 ) ) {
printf( "Epsilon error\n" );
done = TRUE;
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OK = FALSE;
X

/* searching for first section */
if ((!FirstSection) &&
(Inf( P2( 3 ) - Epsilon2 ) > Sup( PoincValue ) ) ) {
/* End of the first section detected */
FirstSection = TRUE;
}

/* searching for the start of second section */
if ( !'SecondSecStart && FirstSection &&
(Inf( P2( 3 ) - Epsilon2 ) < Sup( PoincValue ) ) ) {
/* Start of the second section detected */
SecondSecStart = TRUE;
PPoincFull = P;
}
/* searching for the end of second section */
if ( SecondSecStart &&
(Sup( P2( 3 ) + Epsilon) < Inf( PoincValue ) ) ) {
/* condition in the if above means that the Second
section start has already been detected and
the ball B(P2,Epsilon) lies after section */
/* End of second section detected */
done = TRUE;
}

/* section computation */
if ((SectionType==SectionOpt) && SecondSecStart) {
if (!GetTraj (P + Epsilon * OneVect,PPP,h)) {
/* phi(B(P,Epsilon), [0,h]) subset PPP x/
0K = FALSE;
done = TRUE;
printf( "SecondSection Error\n" );
}
/* incr. PPoincFull to include phi(B(P,Epsilon),[0,h]) */
PPoincFull = Hull( PPoincFull,PPP );

}
}
EnP( 1 ) = PPoincFull( 1 );
EnP( 2 ) = PPoincFull( 2 );

if ('0K) printf( "PoincFun Error\n" );
return( 0K );
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