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ABSTRACT bolic dynamics for different subsystems implies the lack
synchronization.

. . . . f
We investigate the behavior of coupled chaotic system&' . ,
g b y As an example we consider the Hénon map [3] de-

We show that if the coupling is small then there exists in- X .
dependent symbolic dynamics for every coupled subsyfaJDed by the following equation:
tem. As an example we consider _coupled Hénon maps. h(z,y) = (1+y— az? bx), (1)
We compute the value of the coupling strength for which
the symbolic dynamics in every subsystem is sustainedwherea = 1.4 andb = 0.3 are the “classical” parameter
values for which the famous Hénon attractor is observed.
1. INTRODUCTION _In Sectio_n 2 we recall results on the exi_stence of sym-
bolic dynamics for the Henon map. In Section 3 we study
It is well known that when chaotic systems are coupledhe robustness of symbolic dynamics on parameters and
they may demonstrate synchronized behavior. Recentijsturbance added to the system. In Section 4 we analyze
there has been a considerable interest in using the concéptipled Hénon maps using the results from Section 4.
of synchronization of chaos for solving technical prob-
lems. For the applications it is very important to find 2. SYMBOLIC DYNAMICS FOR A2 AND A7
techniques for investigation of the phenomenon of syn-
chronization of chaotic systems. In [2] it was shown that there exist symbolic dynamics
There are several methods for investigating the syrembedded ik? corresponding to the golden subshift on
chronization problem. It was shown in various paperswo symbols. The setd; and E; are shown in Fig. 1a.
that a very important role is played by the transversdfor the exact definition see [2]. In [2] it was shown that
Lyapunov exponents of the synchronized trajectories. the images of vertical edges 6f, underh? are enclosed
was shown that the criterion based on conditional Lyain £, and £, on the opposite sides 6f,U NV, and that the
punov exponents calculated along a typical trajectory dfnages of vertical edges @f; underk? are enclosed in
the system not sufficient and one has to take into accouh} and; on the opposite sides 6f,. It was also shown
transversal Lyapunov exponents computed along all pethat images of horizontal edges &f and N; underh?
odic orbits. Other methods are based on local transversaie enclosed in the interior of the topological stripgu
Lyapunov exponents. NoU E1UN; UFE-. For details see [2]. It follows that for
In this paper we describe the method of investigatioevery sequence of symbdlg,, a1, . .., a,—1), from the
of coupled systems using topological methods. We arget{0, 1} which does not contain the subsequeficel)
interested in the case when synchronization of chaottbere exists a point = (=, y) such that:?’(z) € N,, for
systems cannot be observed due to the existence of inde= 0,... ,n — 1 andh?"(z) = .
pendent symbolic dynamics in coupled subsystems. We In particular for every positive integer there exists
show that if the coupling is small then one may provea periodic point ofh? with periodn. In this way we
that there exists independent symbolic dynamics for ewrave also proved that the subshift on two symbols with
ery coupled subsystem. This means that for two differerthe transition matrix
sequences of symbols one may found trajectory of the 11
coupled system which realizes these two sequences in the ( 10 )
coupled subsystems. In consequence we obtain the coex-
istence of different periodic solutions in different subsy is embedded 2.

tems. In this context the existence of independent sym- |, [4] it was shown that there exist symbolic dynam-

. o : ;
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Figure 1: (a) definition of the setd, and N, for the Figure 2: Regions in th@u, b) plane for which symbolic
proof of symbolic dynamics fok?, (b) definition of the ~dynamics exists, (a) fo¥?, (b) for ™.
setsNy and N, for the proof of symbolic dynamics for
7

. 3. ROBUSTNESS OF SYMBOLIC DYNAMICS

The setsV; andE; are shown in Fig 1b. It was shown |n this section we study robustness of symbolic dynamics.
that fori = 0, 1 the images under’ of vertical edges of The first question we address is whether the symbolic dy-
N; lie on the opposite sides af, U N, (are enclosed namics remains if the parameters of the map are modified.
in Ey and E»). It was also shown that the images un-Using the setsV;, ; plotted in Fig.1 we have checked
derh” of horizontal edges are enclosed in the interior ofyhether for different values dfz, b) the assumptions of
topological stripe defined by the set§ and £; (for the  the theorem on the existence of symbolic dynamics hold.
details see [4] or [2]. It follows that for every sequence |n Fig. 2a we show the rectanglés, b) for which

of symbolsa = (ao, a1, ... ,a,—1) from the set{0,1}  we have proved the existence of symbolic dynamics for
there exists a point = (z, y) such that*(z) € N, for 42 Similarly in Fig. 2b we show regions in the parameter
i =0,...,n—landh*(z) = z. In other words the space for which the symbolic dynamics fdrexists. Itis
symbolic dynamics corresponding to the full shift on twanteresting to note that the symbolic dynamics is present
symbols with the transition matrix in the dynamics of the map even for parameter values far
11 from the standard ones. For example the symbolic dy-
( 11 ) namics forh? exists also fow = 1.6, b = 0.35 and the

symbolic dynamics foh” exists fora = 1.55, b = 0.1.
is embedded i . The second problem we investigate is the existence of



symbolic dynamics in the case when the dynamics of thg 2, 2, and7 rectangles respectively and horizontal edges
map is disturbed by some additive signal. We assume thaere covered bg7, 46, 6, 7 rectangles respectively. The
we only know the upper limit of the absolute value of thismages of these rectangles under the rh&pvere com-

disturbance. We consider a system
ha(z,y) = (1 +y— ax® + e, bx + e3), (2

wherele; | < d; andlez| < d2. Using interval arithmetic
we have found pair&d; , ds) for which the symbolic dy-

puted are we have checked that they lie in a proper way
with respect to the sets; and £;. Hence we proved that
there exist symbolic dynamics for the disturbed Hénon
map if the disturbance has magnitydg < 0.012. The
results for vertical edges are shown in Fig. 3a and for hor-
izontal edges in Fig. 3b.

namics is not destroyed by the disturbance. In order to
prove the existence of symbolic dynamics for particular

values ofe; ande; we check the assumptions of the exis- ezl
tence theorem for the map (2) (we check if the images of
edges ofV; lie properly with respect to the set§, £;). 0.04} : : : :
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Figure 4: (a) regions in thé, e2) space for which the
symbolic dynamics fok? exists, filled rectangle contains
-0.4 1 0 1 X error introduced due to the coupling fli; | < 0.0138.

Figure 3: (a) the covering of the vertical edges/af

and N; with rectangles and its image undet, (b) the
covering of horizontal edges df, andN; and its image
underh?.

(b) regions in thdey, e5) space for which the symbolic
dynamics forh” exists, filled rectangle contains error in-
troduced due to the coupling fof; | < 0.0218.

We have performed similar experiments for different
intervals on thdey, e5) plane. In Fig. 4a and Fig. 4b we
plot rectangles in the spade, es) for which we have

As an example in Fig. 3 we show this images foproved the existence of symbolic dynamicshéfandh”

le1], lea] < 0.012. Vertical edges ofV; were covered by

respectively.



One can clearly see that fbf the symbolic dynamics symbolic sequence does not influence the symbolic dy-
is less robust. It can be destroyed by the disturbance némics in the response system and the trajectory in this

smaller amplitude. second system can realize any other symbolic sequence.
One should also notice that the coupling values for
4. COUPLED HENON MAPS which one observes synchronizatiah (> 0.4) [1] are

of an order of magnitude larger than the values for which

In this section we analyze the behavior of coupled Henoffi€re exist independent symbolic dynamics. o
maps using the results from the previous section. In order AS @ second example let us consider a ring of bidi-
to prove that there exist independent symbolic dynami¢&ctionally coupled Henon maps. Every cell is connected
in a coupled system we have to estimated the error whid}jth two nearest neighbors.
is obtamed by_addlng the cou_plmg terms and check 'fth'ﬁd(xk, k) = h(2'+ d(gyr—2k) + d(zp_1— 1), U),
error is contained in the region for which the symbolic
dynamic exists (these regions are plotted in Fig. 4).

As a first example let us consider two Hénon MaP{heres, df 2, andz,, 41 df 1. The error terms intro-

fork=1,...,n

coupled unidirectionally: duced by the coupling can be computed as
hz,y) = (1 4y — az®, bx), 3) e1 = —2adwgzy, + ad’z2,
he(z',y') = h(x' +di(x —2'),y + da(y = /). (4) ey = bdzy.

; s : .wherez, = zi4+1 + 211 — 224 Using the interval arith-
The first system is independent and is called the driv ¢ ¢k = Th+1 + Th—1 k
y b etic one can show that fod; | < 0.0068 the error terms

ing system. The second one is called the response systelt.
Wg v3//ill consider the casé, — 0 P YSI&Qré bounded bye,| < 0.0392 and|e2| < 0.00506 and

From the results described in the previous section the independent symbolic dynamics o exists.

know that if the response system is disturbed weakly then
there exist independent symbolic dynamics in this sys- 5. CONCLUSIONS

tem. . .
In order to check whether the symbolic dynamics sy this paper we have considered the problem of robust-

vives we have to check if the disturbance is small. ThE®SS of symbolic dynamics for chaotic systems. We have
error terms can be computed as: shown that the symbolic dynamics is not destroyed if the

disturbance is small. For the Henon map we have found
ey =do(y— o) — 2adya’ (v — 2') — ad?(x — 2')?, the parameter values and the values of disturbance for
es = bds (2 — o). which the symbolic dynamics survives. QS|ng these re-
sults we have found the values of coupling strength for
We investigate the existence of symbolic dynamics, s§hich there existindependent symbolic dynamics for ev-
we may assume thdt, y), (+',y') € No U N;. From €Y couple}d subsystem for_the case of _unldlrecnonally
the definitions of set&V; and - we know thate, ¢’ € cqupled Hénon map and a ring of bidirectionally coupled
[~0.82,0.42] andy,y € [0.1,0.39]. By means of in- He€non maps.
terval arithmetics tools using the above formulas one can
easily check that ifd;| < 0.0138 thenle;| < 0.0397 and 6. REFERENCES
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