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1 Introduction

The complex behavior in second-order digital �lters has attracted much recent interest

[1, 2, 4, 6]. In this paper we consider the implications for the �lter's dynamics of

two rules for the correction of the overow e�ect, namely the modular and saturation

characteristics. To simplify analysis, we neglect the quantization error which occurs in

the �nite wordlength representation. Thus, under zero input conditions, the �lter can

be modeled by a two-dimensional discrete-time dynamical system with the following

state equations [1]:
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where f(x) is the overow rule. The state space is IR

2

, but we concentrate mainly on

the trajectories inside the invariant set I

2

= f(x; y) : �1 � x � 1;�1 � y � 1g since
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for all k � 2 for the overow rules we consider.

2 Digital �lters with modular nonlinearity

When we use 2's complement arithmetic as the overow rule, f(x) has the form:

f(x) = x� 2n for �1 + 2n � x < 1 + 2n, n an integer (2)

In this section we shall consider the probabilistic (measure-theoretic) approach

in the analysis of chaos in the dynamical system F. Measure-preserving dynamical

system can display at least two di�erent levels of chaotic behavior. They can be

Bernouilli or exact systems.

B-systems and exact systems both have the mixing property. Mixing means that

a set of initial conditions of nonzero measure will eventually spread over the whole

phase space as the system evolves. In order for the reader to get an intuitive idea

for the di�erence between exact systems and B-systems, we present the 7-th iterate

of 40000 points in the area jxj � 0:025, jyj � 0:025 by a B-system (the map F with



Figure 1: The 7-th iterate of the map F for 40000 points in the block jxj � 0:025 ,

jyj � 0:025. (a) a = 3 , b = �1. (b) a = 2 , b = 6.

a = 3 and b = �1) in Fig. 1a and by an exact system (the map F with a = 2 and

b = 6) in Fig. 1b.

In this section we shall prove that in the region jbj > 1, if a and b are integers and

b 6= �a + 1, the map F is exact. First we introduce some de�nitions from measure

theory.

De�nition 1 Let (M;
; �) be a normalized measure space, and G : M ! M a

measure-preserving transformation (�(G

�1

(A)) = �(A) for all A 2 
). G is called

mixing if

lim

n!1

�(A \ G

�n

(B)) = �(A)�(B) for all A;B 2 
 (3)

The measure we will use for the map F will be the Borel measure.

Lemma 1 Let b 6= 0 be an integer. Then the map F is measure-preserving.

Theorem 1 If b = �1, a > 2 and a is an integer, then F is mixing.

De�nition 2 Let (M;
; �) be a normalized measure space, and G : M ! M a

measure-preserving transformation such that for all A 2 
, G(A) 2 
. G is called

exact if

lim

n!1

�(G

n

(A)) = 1 for every A 2 
 ,�(A) > 0 (4)

Theorem 2 If a,b are integers, such that b 6= a+ 1, b 6= �a + 1 and b 6= 0;�1, then

the map F is exact.

It can be proved that exactness of G implies that G is mixing. The converse is

not necessarily true; the mixing map F for b = �1 and a an integer larger than 2, is

not an exact map. Recently [6], the map F was proved to be Bernouilli for b = �1

and jaj > 2.



3 Digital �lters with saturation arithmetic

In this section we consider the saturation function for the overow rule, i.e.:

f(x) =

1

2

(jx + 1j � jx� 1j) (5)

We present the classi�cation of limit sets for di�erent values of system parameters.

We consider the case (a; b) 2 Q = f(a; b) : b < �1; b < a+ 1; b < �a+ 1g. Previously

[3], it was proved that for (a; b) 62 Q all limit sets are periodic with period length one

or two. Throughout this section we assume that (a; b) 2 Q.

Let us de�ne:
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Let W
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be the boundary of 
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Lemma 2 


1

is an invariant absolutely convex polygon. Its boundary W

1

is also

invariant.

Let us de�ne

� := FjW

1

: W

1

7�! W

1

(7)

Lemma 3 � is a continuous surjection. If W

1

contains no corners of the state

space I

2

then � is a homeomorphism.

Theorem 3 Let x 6= 0. Then there exists n

0

� 0 such that for every n � n

0

:

F

n

(x) 2 W

1

.

The above theorem states that every non-trivial trajectory in �nite time enters the

set W

1

and remains in it. Thus we can reduce our study to the analysis of one-

dimensional map of W

1

into itself. As W

1

is homeomorphic to a circle we can

de�ne the rotation number of �. The map � is weakly monotone which implies the

existence of a unique rotation number for each pair (a; b).

Theorem 4 If (a; b) 2 Q

3

, x 6= O, � is the rotation number of �, then

1. If � is not a homeomorphism then � is rational.

2. If � is rational (� = p=q) then the limit set of x is a period-q orbit contained in

W

1

.

3. If � is irrational then the limit set of x is dense in W

1

.

In Fig. 2 we present the structure of Arnold tongues on parameter plane. The

regions with the same rotation number are shown. Using Lemma 3 it is possible to

�nd parameters (a; b) for which � is a homeomorphism. Points (a; b) lying inside the

half-circular regions correspond to homeomorphic � and for other points the map �

is not homeomorphic.



Figure 2: The ranges of parameters (a; b) with a given rotation number. (a) Global

diagram, (b) Fine structure of Arnold tongues.

4 Conclusions

We considered the implications of two overow rules for the �lter's behaviour. We

observed that the overow rule used is crucial for the �lter's dynamics. In the case

of modular characteristic we proved the strong chaotic �lter's behaviour (mixing,

exactness) in a wide range of parameters. On the other hand the �lter with saturation

characteristic was proved not to be chaotic. In particular we proved in that case the

existence of periodic and quasi-periodic limit sets only.
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