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Abstra
t

It is well known that the se
ond order digital �lter with two's 
omplement arith-

meti
 may exhibit 
haoti
 behaviors [1, 2℄. It is also known that for 
ertain 
lass

of �lter parameters, the se
ond order �lter exhibits periodi
 behaviors. This paper

studies the relation between the period of periodi
 traje
tories and the period of

traje
tory traveling patterns for the parti
ular 
lass of �lter parameters. A 
om-

plete 
lassi�
ation of periodi
 behaviors is given and the underlying relations are

fully explored. The shape and layout of the regions in the state spa
e displaying

periodi
 behavior of the same type are fully examined. The mathemati
al analysis

is a

ompanied by 
onsiderable simulation results.

1 Introdu
tion

In re
ent years, fast advan
es in semi
ondu
tor devi
es, integrated 
ir
uits and 
omputer

te
hnology have made it possible to have a wide range of appli
ations of digital �ltering

te
hniques in areas su
h as spee
h and image pro
essing, 
onsumer ele
troni
s, digital


ommuni
ations and 
ontrol systems [2℄. Digital �ltering te
hniques provide an easy-to-

use and eÆ
ient digital representation for signal pro
essing and transmission. Digital

�ltering is about transformations of the input data in the form of a sequen
e of numbers

�
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(dis
rete in nature) into another data set representing a sequen
e of numbers at the

output. Due to the nonlinearities introdu
ed in real world hardware implementations,


omplex behaviors su
h as os
illations and irregular behaviors may o

ur.

In the well known paper [1℄, 
haos in the following se
ond order digital �lter with two's


omplement arithmeti
 was studied

x(k + 1) = F (x(k)) = Ax(k) + Bs

k

(1)

where x = (x

1

; x

2

)

T

and

A =

�

0 1

b a

�

; B =

�

0

2

�

(2)

s

k

=

8

<

:

�1 if bx

1

(k) + ax

2

(k) � 1

1 if bx

1

(k) + ax

2

(k) < �1

0 otherwise

The system behaviors with parameters a and b on the stability margin jaj < 2; b = �1

were of interest. Under the 
ondition s

k

= 0 the equation (1) is linear and there exists a

linear transformation matrix

T =

�

1 0


os � sin �

�

; (3)

su
h that the matrix A be
omes

A = T

�


os � sin �

� sin � 
os �

�

T

�1

; (4)

where 
os � = a=2, 0 < � < �. The 
haoti
 region was shown to be lo
ated on the

boundary of the stable region of the �lter. It was proved that for � = 2�r where r is

an irrational number, the system exhibits various 
haoti
 behaviors su
h as ellipse like

fra
tals in the region �(x) � 1 where

�(x) =

r

(x

1

+ x

2

)

2

2 + a

+

(x

1

� x

2

)

2

2 � a

:

It was shown that for 
ertain values of initial 
onditions the symboli
 sequen
e is periodi
,

whi
h 
orresponds to quasi{periodi
 traje
tory �lling densely a �nite number of ellipses

or a periodi
 orbit visiting 
enters of these ellipses [1, 3℄. This is due to the property that

for an irrational r, A

K

6= I for any integer K. Although it is known that for rational r

the digital �lter may exhibit periodi
 behaviors [2℄ the relation between the rational r,

the periods of the traje
tories and their traveling patterns have not been fully explored.

In this paper, we investigate the relation between the rational r, the period of the

periodi
 traje
tories, and the period of the traje
tory traveling pattern. A 
omplete
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lassi�
ation of periodi
 behaviors is given and mathemati
al analysis of the underlying

relations is presented. The shape and layout of the regions in the state spa
e 
orresponding

to a given traveling pattern are examined. Considerable simulation studies are presented

to show the intriguing behaviors.

2 Simulation Results

It was shown in [1℄ that for irrational r, the 
haos starts when the parameter setting

is beyond its stability region. It is similar for rational r as well be
ause the over
ow

nonlinearity a
tivates in the same way.

Be
ause of the swit
hing value s, the phase plane is divided into three regions D

0

, D

+

,

D

�

de�ned as follows

D

0

= fx : �1 � �x

1

+ ax

2

< 1g;

D

+

= fx : �x

1

+ ax

2

� 1g;

D

�

= fx : �x

1

+ ax

2

< �1g;

whi
h 
orrespond to s

k

taking value 0; +1; �1 respe
tively. For a given initial 
onditions

the system (1) 
an be viewed as a linear system driven by the s sequen
e. There is a well-

de�ned map between the phase plane R

2

and the sequen
e spa
e � = fs = (s

0

; s

1

; � � � ) :

s

k

= �1; 0; 1; k = 0; 1; 2; � � � g [1℄. Let us de�ne L(s) as the period of the traje
tory

traveling pattern, that is the symboli
 sequen
e, s. For example, if the traje
tory moves

in a 
omplex periodi
 pattern, say

s = (� � �+1+1000�1�100 +1+1000�1�100 � � �)

then we say the period of the symboli
 sequen
e is L(�s) = 9 and we represent the period{L

symboli
 sequen
e as

s = (++000��00):

We also denote r = q=p where q and p are positive integers satisfying 2q < p and

g
d(p; q) = 1 (g
d stands for greatest 
ommon divisor). Note that sin
e 
os � = 
os(2���)

and the only parameter 
onsidered is a = 2 
os �, it is suÆ
ient to study � 2 (0; �), that

is 0 < 2q < p.

It 
an be shown that for arbitrary initial 
onditions the traje
tory of the system (1)

for b = �1 and a 2 [�2; 2℄ after a �nite number of steps enters the region

I

2

= [�1; 1℄ � [�1; 1℄; (5)
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Figure 1: r = 1=6, x(0) = (0:5; 0:3)

T

,s = (0), L = 1, (a) The traje
tory travels on an

ellipse in D

0

with period 6, (b) The s sequen
e of the last 50 iterations.
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Figure 2: r = 1=6, x(0) = (0:9; 0:9)

T

, s = (0), L = 1, (a) The traje
tory travels on an

ellipse in D

0

with period 6 but � > 1, (b) The s sequen
e of the last 50 iterations.

and remains in this set. Obviously all periodi
 orbits must be en
losed within I

2

. Hen
e

in our study we limit ourselves to the set I

2

of initial 
onditions and 
onsider the system

(1) as a map from I

2

to I

2

.

Numerous simulations were performed (with 500 iterations). Some typi
al behaviors

are depi
ted in Figures 1{8. (The dashed lines show the boundaries between D

0

, D

+

and

D

�

. The dot-dashed line represents the ellipse �(x) = 1).

Figures 1 and 2 depi
t an interesting periodi
 behavior within D

0

(i.e., s

k

= 0 for

all k). The traje
tory travels on a �nite set of points resembling an ellipti
 shape with

period equal to p. The period of the symboli
 sequen
e is L = 1. It is interesting to note

that Figure 2 shows that the periodi
 traje
tory a
tually travels in a �nite set of states

outside the ellipse �(x) � 1 but still stays in D

0

, in 
ontrast to the irrational 
ase where

�(x(0)) > 1 implies that an over
ow s

k

6= 0 will o

ur for some positive k.

Figures 3{8 present mu
h intriguing behaviors where the traje
tory travels within

D

0

, D

+

and D

�

. Figures 3 and 4 illustrate that the traje
tory travels in D

+

and D

�
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Figure 3: r = 1=12, x(0) = (0:9; 0:5)

T

, s = (+�000), L = 5, (a) The traje
tory travels in

D

0

, D

+

and D

�

periodi
ally with period 5 � 12 = 60, (b) The s sequen
e of the last 50

iterations.
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Figure 4: r = 1=11, x(0) = (0:8;�0:4)

T

, s = (�+), L = 2, (a) The traje
tory travels

in D

+

and D

�

periodi
ally with period 2 � 11 = 22, (b) The s sequen
e of the last 50

iterations.
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Figure 5: r = 1=10, x(0) = (0:9;�0:4)

T

, s = (+�), L = 2, (a) The traje
tory travels in

D

+

and D

�

periodi
ally with period 10, (b) The s sequen
e of the last 50 iterations.
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Figure 6: r = 7=15, x(0) = (0:5; 0:75)

T

, s = (����0++++0), L = 10, (a) The traje
tory

travels in D

0

, D

+

and D

�

periodi
ally with period 30, (b) The s sequen
e of the last 50

iterations.

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

D0

D+

D−

(b)

450 455 460 465 470 475 480 485 490 495 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Iterations

 s
 s

eq
ue

nc
e

Figure 7: r = 1=15, x(0) = (0:85;�0:4)

T

, s = (�+�+0), L = 5, (a) The traje
tory travels

in D

0

, D

+

and D

�

periodi
ally with period 3� 5 = 15, (b) The s sequen
e of the last 50

iterations.
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Figure 8: r = 3=7, x(0) = (�0:4940; 0:8901)

T

, s = (++ 000��000), L = 10, (a) The

traje
tory travels in D

0

, D

+

and D

�

periodi
ally with period 10, (b) The s sequen
e of

the last 50 iterations.
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periodi
ally with periods 60 and 22 respe
tively whi
h are the multiple of p and L. Figure

5 shows the traje
tory traveling in D

+

and D

�

periodi
ally with period 10 whi
h is the

least 
ommon multiple of p and L. This parti
ular behavior 
an be identi�ed in Figures

6 and 7 where the traje
tory travels in D

0

, D

+

and D

�

periodi
ally with periods 30 and

15 respe
tively whi
h are the least 
ommon multiples of p and L. Figure 8 des
ribes an

even more interesting 
ase be
ause the period of traje
tory is neither a multiple of p nor

a divisor of p.

The question to be asked is, what is the relation between the period of the system

periodi
 behaviors, the period of their traveling patterns L and the parameter q=p? This

question will be addressed in the following se
tions.

3 Analysis of Periodi
 Behaviors

In the following we assume that the rotation number of the 
onsidered system is rational,

i.e. a = 2 
os(2�q=p) and q and p do not have 
ommon fa
tors larger than one (g
d(q; p) =

1).

Let us de�ne three aÆne maps:

F

s

(x) = Ax + bs; for s = �1; 0;+1: (6)

Let us 
onsider a traje
tory starting at the initial point x(0) and assume that x(0)


orresponds to the symboli
 sequen
e s = (s

0

; s

1

; s

2

; : : : ). First let us observe that the

kth iteration of the system starting from x(0) 
an be 
omputed as

x(k) = (F

s

k�1

Æ � � � Æ F

s

1

Æ F

s

0

)(x(0)) = A

k

x(0) +

k�1

X

i=0

A

k�1�i

Bs

i

; k � 0: (7)

See that for the �xed symboli
 sequen
e F

s

k�1

Æ � � � Æ F

s

1

Æ F

s

0

is an aÆne map. We will

show that periodi
 orbits of the system (1) are 
losely related to the situation when this

map be
omes identity for parti
ular 
hoi
es of symboli
 sequen
e s = (s

0

; s

1

; : : : ; s

k�1

).

The equation (7) 
an be rewritten in the following form:

x(k) = A

k

x(0) + 	

k

� (s

0

; s

1

; : : : ; s

k�1

)

T

; (8)

where

	

k

=

�

A

k�1

B; : : : ; A

2

B;AB;B

�

: (9)

Now let us assume that x(0) is a periodi
 point, i.e. there exist n > 0 su
h that

x(n) = x(0). We say that n is the minimum period if x(k) 6= x(0) for all k = 1; 2; : : : ; n�1.

Obviously if x(0) is periodi
 then the symboli
 sequen
e is also periodi
. Its period 
an

7



in general be smaller than n. The period of the symboli
 sequen
e, L, must be a divisor

of n. In theory, all period{n orbits for given values of parameters 
an be obtained by

solving the equation

x(0) = A

n

x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

for all symboli
 sequen
es s = (s

0

; s

1

; � � � ; s

L�1

), where L is a divisor of n. This method

for �nding periodi
 solutions is very ine�e
tive. In order to �nd all period{n orbits one

needs to solve 3

n

linear equations.

In this se
tion we investigate the relation between the period n of the orbit, the period

L of the symboli
 sequen
e and parameters of the system (spe
i�
ally the parameter p).

We show that given L and p we 
an fully 
lassify periodi
 orbits.

This will allow us to analyze the behavior shown in Figures 1{8. Note that in all the

simulations L 6= p. Furthermore, the dis
rete states appear to be grouped into 
lusters

and the number of 
lusters is the same as the period of the symboli
 sequen
e (apart from

the 
ase presented in Fig. 8). In the following, we will present theorems whi
h 
an be

used to des
ribe all these behavior types.

The �rst theorem states that if a point has periodi
 symboli
 sequen
e with period L

then it is periodi
 with period n being the least 
ommon multiple (l
m) of L and p.

Theorem 1. Let us assume that the symboli
 sequen
e s of the traje
tory starting at x(0)

has period L (s = (s

0

; s

1

; : : : ; s

L�1

)). Let us de�ne n as the least 
ommon multiple of p

and L, i.e. n = l
m(p; L), and let us extend s periodi
ally so that the sequen
e s has

length n. Then

y

s

= 	

n

s

T

=

n�1

X

i=0

A

n�i�1

Bs

i

= 0: (10)

The map F

s

n�1

Æ � � �ÆF

s

1

ÆF

s

0

is identity and x(0) is periodi
 with period n (not ne
essary

minimum).

Proof. First let us observe that

A

k

= T

�


os(2�qk=p) sin(2�qk=p)

� sin(2�qk=p) 
os(2�qk=p)

�

T

�1

: (11)

It follows that A

p

= I and sin
e n is a multiple of p we have A

n

= I. The symboli


sequen
e s is periodi
 and then a

ording to (8) we have

x((k + 1)n) = A

n

x(kn) + 	

n

s

T

= x(kn) + y

s

; for k � 0: (12)

8



Hen
e

x(kn) = x(0) + ky

s

; for all k � 0:

Now suppose y

s

6= [0; 0℄

T

. Then it is 
lear that there exists k > 0 su
h that x(kn) is arbi-

trary far from x(0) and in parti
ular x(kn) 62 [�1; 1℄� [�1; 1℄, whi
h is a 
ontradi
tion.

Thus y

s

= 0. A

ording to (7) F

s

n�1

Æ � � � Æ F

s

1

Æ F

s

0

is identity and x(n) = x(0).

The above theorem tells that if the symboli
 sequen
e is periodi
 the traje
tory also has

to be periodi
 and the period must be a multiple of L not larger than n = l
m(L; p). This

is all we 
an say in the general 
ase. Further des
ription is possible when we 
onsider two


ases. The �rst 
ase, whi
h is observed in most experiments (and in all of the examples

shown in Figures 1{8) takes pla
e when L is not a multiple of p. It is studied in the

following se
tion. The se
ond 
ase, when L is a multiple of p happens very infrequently.

It will be studied later.

3.1 L is not a multiple of p

We �rst derive results for the 
ase when L is not a multiple of p. We will prove the

results on the minimum period of the traje
tory in the 
ase. We will show that in this


ase the traje
tory 
onsists of points lying on L ellipses, whi
h 
enters are de�ned by the

symboli
 sequen
e. Before we pro
eed, we introdu
e the 
on
ept of ellipti
 sets. Consider

the di�eren
e equation

z(k + 1) = Az(k);

where z(k) 2 R

2

and A is the same as de�ned in (2) with b = �1 and jaj < 2. One 
an

easily 
he
k that for the energy type fun
tion

V (z) = z

2

2

� az

1

z

2

� bz

2

1

= (z

2

�

a

2

z

1

)

2

+ (�b�

a

2

4

)z

2

1

; (13)

and for any positive 
onstant 
 > 0, V (z) = 
 represents an ellipse for x 2 R

2

[5℄. In fa
t,

this is the orbit where the system state travels for s = (0). One 
an also easily verify

that V (z(k + 1)) = V (z(k)) = V (z(0)). If there is a set of states fz(0); � � � ; z(m � 1)g

su
h that ea
h member z(k) of the set satis�es V (z(k)) = V (z(0)), then we 
all the set

an ellipti
 set. It is 
lear that the points z(k) lie on the ellipse 
entered at the origin.

The size of the ellipse is de�ned by z(0). In the following we will also 
onsider ellipti


sets 
entered at points other than the origin. This 
on
ept will be used in the following

se
tions.
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Theorem 2. Let us assume that the symboli
 sequen
e s of the initial point starting at

x(0) has period L, whi
h is not a multiple of p. Let us de�ne the points

z

i

= (I � A

L

)

�1

	

L

s

i

; for i = 0; : : : ; L� 1 (14)

where 	

L

is de�ned in (9) and s

i

is the symboli
 sequen
e obtained by shifting s to the

right i{times, i.e., s

i

= (s

i

; s

i+1

; � � � ; s

L�1

; s

0

; � � � ; s

i�1

)

T

.

1. If x(0) 6= z

0

then the traje
tory starting at x(0) has the minimum period n =

l
m(p; L). Furthermore, the points of the periodi
 traje
tory are grouped into L

ellipti
 sets of points 
entered at z

i

and ea
h of the ellipti
 sets is 
omposed of n=L

points.

2. If x(0) = z

0

then the traje
tory starting at x(0) has the minimum period L and

x(i) = z

i(mod L)

.

Proof. First let us observe that det(I�A

L

) = 2(1� 
os(2�qL=p)) 6= 0, sin
e g
d(p; q) = 1

and L is not a multiple of p. Let us denote by (z

0

; z

1

: : : ; z

L�1

) the unique solution of the

set of equations

z

1

= Az

0

+ Bs

0

.

.

.

z

L�1

= Az

L�2

+ Bs

L�2

(15)

z

0

= Az

L�1

+ Bs

L�1

Straightforward algebrai
 manipulations of (15) yield

(I � A

L

)z

0

= 	

L

(s

0

; s

1

; � � � ; s

L�1

)

T

= 	

L

s

0

;

(I � A

L

)z

1

= 	

L

(s

1

; � � � ; s

L�1

; s

0

)

T

= 	

L

s

1

;

.

.

. (16)

(I � A

L

)z

L�1

= 	

L

(s

L�1

; s

0

; � � � ; s

L�2

)

T

= 	

L

s

L�1

:

Sin
e det(I � A

L

) 6= 0 it follows that the solutions z

i

are uniquely determined as

z

i

= (I � A

L

)

�1

	

L

s

i

; for i = 0; : : : ; L� 1:

Let n be the least 
ommon multiple of p and L. De�ne two integers n

p

= n=p and

n

L

= n=L.

A traje
tory starting from x(i + jL) (where i = 0; 1; : : : ; L � 1 and j � 0) has a

periodi
 symboli
 sequen
e s

i

. Hen
e it 
an be easily derived from (8) that

x(i + (j + 1)L) = A

L

x(i + jL) + 	

L

s

i

; for i = 0; : : : ; L� 1; j � 0: (17)
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Denote y

i

(j) = x(i + jL) � z

i

for i = 0; 1; : : : ; L � 1. y

i

(j) is the 
oordinate of the

point x(i + jL) after moving the origin to z

i

. Then we have

y

i

(j + 1) = x(i + (j + 1)L) � z

i

= A

L

x(i + jL) + 	

L

s

i

� z

i

(18)

From (17), we have 	s

i

= z

i

� A

L

z

i

, then (18) be
omes

y

i

(j + 1) = A

L

x(i + jL) � A

L

z

i

= A

L

(x(jL) � z

i

) = A

L

y

i

(j) (19)

Iterating (19) n

L

times yields

y

i

(j + n

L

) = A

n

L

L

y

i

(j) = A

n

y

i

(j) = A

pn

p

y

i

(j) = y

i

(j); (20)

sin
e A

p

= I.

Equation (20) demonstrates two fa
ts. First, it indi
ates that the least 
ommon mul-

tiple n of p and L is the period of the traje
tory. Indeed x(n) = x(n

L

L) = y

0

(n

L

) + z

0

=

y

0

(0) + z

0

= x(0) whi
h proves that n is the period. Se
ond, if x(0) is not equal to z

0

then equation (20) means that the su

essive (every L steps) states are on an ellipti
 set

in the x

1

{x

2

phase plane 
entered at z

i

. The traje
tory is then divided into L ellipti
 sets

fx(i + jL) = z

i

+ y

i

(j) = z

i

+ A

j

y

i

(0) : j = 0; : : : ; n

L

� 1g

L�1

i=0

; (21)

From (21) one 
an easily see that for a �xed i the points x(i + jL) are lo
ated on the

ellipse 
entered at z

i

. Thus we have proved that the points of periodi
 traje
tory are

grouped into L ellipti
 sets 
entered at z

i

(i = 0; 1; : : : ; L� 1). Ea
h ellipti
 set 
onsists

of n

L

= n=L points.

If x(0) = z

0

then y

i

(j) = 0 for all i = 0; 1; : : : ; L�1 and j � 0. In 
onsequen
e x(i) = z

i

for i = 0; 1; : : : ; L�1 and after L steps the traje
tory returns to the initial 
ondition. This


ase 
an be 
onsidered as the ith ellipti
 set 
ompressed into its 
orresponding 
enter.

Theorem 2 
an in fa
t explain all the behaviors in Figures 1{8. Figures 1 and 2


orrespond to a single 
enter (be
ause of L = 1) with traje
tories traveling on an ellipti


set surrounding the 
enter. Figures 3 and 4 are typi
al behaviors where 5 and 2 ellipti


sets are found respe
tively. Figures 5{7 are another examples. The traje
tories travel

periodi
ally on L ellipti
 sets, ea
h of whi
h 
ontains the number of states equal to

l
m(p; L)=L. Figure 8 presents a degenerate 
ase, whi
h is the subje
t of the se
ond part

of the Theorem 2, where ea
h ellipti
 set is shrunk to its 
enter.

3.2 L is a multiple of p

Another 
ase that needs to be explored is the 
ase when L is a multiple of p. As demon-

strated in the proof of Theorem 2 in this 
ase det(I � A

L

) = 2(1 � 
os(2�qL=p)) = 0. It

11



is not possible to �nd a unique solution of the equation (15). In 
onsequen
e there is no


orresponding ellipti
 sets. This situation is analyzed in the following theorem.

Theorem 3. Let us assume that the symboli
 sequen
e s of the traje
tory starting at x(0)

has period L, whi
h is a multiple of p. Then L is the minimum period of x(0).

Proof. Sin
e L is a multiple of p it is 
lear that L = l
m(p; L). From Theorem 1 it

follows that L is the period of x(0). It must be the minimum period sin
e period of the

point in the state spa
e 
annot be smaller than the period of the 
orresponding symboli


sequen
e.

Although Theorem 3 states that if there exists a period{L symboli
 sequen
e s where

L is a multiple of p, then x(L) = x(0), it does not guarantee that su
h a symboli
 sequen
e

does exist. We now look at some 
onstraints that limit the existen
e of admissible symboli


sequen
es. Let n = l
m(p; L) and n = pn

p

, where n

p

is a positive integer. Sin
e A

p

= I,

then we have

x(n) = A

n

x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

= x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

(22)

From Theorem 1 it follows that x(n) = x(0) and

y

s

=

n�1

X

i=0

A

n�i�1

Bs

i

= 0; ; (23)

whi
h 
an be re
ast as

n�1

X

i=0

A

n�i�1

Bs

i

=

n

p

�1

X

i=0

p�1

X

j=0

A

p�j�1

Bs

j+ip

=

p�1

X

j=0

A

p�1�j

B

n

p

�1

X

i=0

s

j+ip

= 0: (24)

Denote ŝ

j

=

P

n

p

�1

i=0

s

j+ip

, then (24) be
omes

[A

p�1

B;A

p�2

B; � � � ; B℄(ŝ

0

; ŝ

1

; � � � ; ŝ

p�1

)

T

= 0 (25)

We 
an further explore the 
hara
teristi
 of (25). Be
ause of (3) and (4), we have

A

k

= T

�


os k� sin k�

� sin k� 
os k�

�

T

�1

= sin

�1

�

�

� sin(k � 1)� sin k�

� sin k� sin(k + 1)�

�

where � = 2�=p. Hen
e sin
e sin � 6= 0, then (25) is equivalent to

�

sin(p� 1)� sin(p� 2)� � � � sin 2� sin � 0

0 sin(p� 1)� � � � � � � sin 2� sin �

�

ŝ

T

= 0 (26)

where ŝ = (ŝ

0

; ŝ

1

; � � � ; ŝ

L�1

). Note that sin(p�i)� = sin((p�i)(2�=p)) = sin(2��2�i=p) =

� sin i�. If p is odd, then (26) be
omes

�

� sin � � sin 2� � � � � sin

p�1

2

� sin

p�1

2

� � � � sin � 0

0 � sin � � sin 2� � � � � sin

p�1

2

� sin

p�1

2

� � � � sin �

�

ŝ

T

= 0

12



whi
h leads to

(p�1)=2

X

i=1

(ŝ

i�1

� ŝ

p�1�i

) sin i� = 0;

(p�1)=2

X

i=1

(ŝ

i

� ŝ

p�i

) sin i� = 0 (27)

If p is even, then (26) be
omes

�

� sin � � � � � sin

p�2

2

� 0 sin

p�2

2

� � � � sin � 0

0 � sin � � � � � sin

p�2

2

� 0 sin

p�2

2

� � � � sin �

�

ŝ

T

= 0

whi
h leads to

p�2

2

X

i=1

(ŝ

i�1

� ŝ

p�1�i

) sin i� = 0;

p�2

2

X

i=1

(ŝ

i

� ŝ

p�i

) sin i� = 0 (28)

The equations (27) and (28) 
an be used to investigate the existen
e of admissible

symboli
 sequen
es. Any admissible symboli
 sequen
e has to satisfy either (27) or (28).

Generally, it is diÆ
ult to solve (27) and (28) to �nd admissible symboli
 sequen
es.

Furthermore, it appears to be few symboli
 sequen
es whi
h satisfy (27) or (28). In

the following subse
tion, the problem of admissible sequen
es will be examined using a

di�erent approa
h.

3.3 Admissible sequen
es

In this se
tion we investigate the problem of shape and layout of the sets in the state

spa
e 
orresponding to a given symboli
 sequen
e. Let us assume that we have a period{

L symboli
 sequen
e s = (s

0

; s

1

; : : : ; s

L�1

). We would like to �nd the set of points in

the state spa
e, whi
h produ
es this symboli
 sequen
e. We 
all a symboli
 sequen
e

admissible if there exists a point in the state spa
e whi
h realizes this sequen
e.

Let us denote by G

s

the inverse of F

s

(x) = Ax + bs, for s = �1; 0;+1. For b 6= 0 the

maps G

s

are well de�ned and 
an be 
omputed as G

s

(x) = A

�1

(x� bs). First we present

a theorem whi
h allows to e�e
tively �nd the set in the state spa
e 
orresponding to a

given periodi
 symboli
 sequen
e.

Theorem 4. Let s = (s

0

; s

1

; : : : ; s

L�1

) be the periodi
 symboli
 sequen
e. Let n =

l
m(L; p). The symboli
 sequen
e s is admissible if and only if the following two 
on-

ditions are satis�ed

y

s

= 	

n

s

T

=

n�1

X

i=0

A

n�i�1

Bs

i

= 0: (29)

W

s

=

n�1

Y

i=0

G

s

0

ÆG

s

1

Æ � � � ÆG

s

i

�1

(I

2

) 6= ;; (30)

If s is admissible then the set of points whi
h realize s is W

s

.
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Proof. Let us assume that the periodi
 symboli
 sequen
e s = (s

0

; s

1

; : : : ; s

L�1

) is ad-

missible. It means that there exists a point x(0) whi
h realizes this sequen
e. From the

Theorem 1 it follows that 	

n

s

T

= 0, i.e. the 
ondition (29) is satis�ed. The fa
t that x(0)


orresponds to the symboli
 sequen
e s = (s

0

; s

1

; : : : ; s

n�1

) is equivalent to the following

set of 
onditions:

x(0) 2 I

2

; F

s

0

(x(0)) 2 I

2

; F

s

1

(F

s

0

(x(0))) 2 I

2

; : : : ; F

s

n�1

(: : : F

s

1

(F

s

0

(x(0)) : : : ) 2 I

2

: (31)

This in turn is equivalent to

x(0) 2 I

2

; x(0) 2 G

s

0

(I

2

); x(0) 2 G

s

0

ÆG

s

1

(I

2

); : : : ; x(0) 2 G

s

0

ÆG

s

1

Æ � � � ÆG

s

n

�1

(I

2

):

(32)

In 
onsequen
e the interse
tion (30) is not empty as it 
ontains x(0).

Now we prove that if the 
onditions (29) and (30) hold then the sequen
e is admissible.

Let us 
hoose a point x(0) belonging to the produ
t (30). It follows that

x(0) 2 I

2

; F

s

0

(x(0)) 2 I

2

; F

s

1

(F

s

0

(x(0))) 2 I

2

; : : : ; F

s

n�1

(: : : F

s

1

(F

s

0

(x(0)) : : : ) 2 I

2

: (33)

Hen
e the �rst n elements of the symboli
 sequen
e of x(0) are s

0

; s

1

; : : : ; s

n�1

. It follows

from (7) and (29) that

x(n) = A

n

x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

= x(0): (34)

The point x(0) is periodi
 and hen
e it has periodi
 symboli
 sequen
e s = (s

0

; s

1

; : : : ; s

n�1

).

In this way we proved that s is admissible.

From the above theorem it follows that the set of points in the state spa
e 
orrespond-

ing to a parti
ular symboli
 sequen
e is the interse
tion of n sets. Ea
h of these sets is

a 
onvex quadrangle (the maps G

s

0

Æ G

s

1

Æ � Æ G

s

i

�1

are aÆne), hen
e the interse
tion

must be either empty or must be a 
onvex polygon with at most 4n edges. I may also

happen that the interse
tion is a degenerate polygon with empty interior (a segment or

a point), although we have not observed su
h 
ases. This theorem provides an eÆ
ient

method for �nding the set in the state spa
e 
orresponding to the given symboli
 sequen
e.

First we 
he
k the 
ondition (29). If y

s

6= 0 the symboli
 sequen
e is not admissible. In

the opposite 
ase we �nd the produ
t (30). This whole pro
edure 
an be implemented

on a 
omputer. Finding interse
tion of two 
onvex polygons is a standard problem of


omputational geometry, and algorithms to perform this task are widely available [4℄.

Using the above theorem we have found sets of points in the state spa
e realizing

di�erent symboli
 sequen
es for several values of parameters. We have 
onsidered q=p =

14



L s area

1 (0) 4:0000

Total 4.0000

Table 1: Admissible symboli
 sequen
es for q=p = 1=4.

L s area

1 (0) 3:0000

2 (+�) 1:0000

Total 4.0000

Table 2: Admissible symboli
 sequen
es for q=p = 1=6.

1=4; 1=5; 1=6; 3=7; 2=9; 1=12. As mentioned before one 
ould �nd all period{n 
y
les by


onsidering all period{n symboli
 sequen
es and 
he
king 3

n


ases. This pro
edure is

however not very eÆ
ient and allows �nding only periodi
 traje
tories with a small period.

We have followed a di�erent approa
h. For ea
h parameter values we have generated

traje
tories starting from many initial 
onditions uniformly distributed in the state spa
e.

For ea
h of the traje
tories we have 
he
ked whether the symboli
 sequen
e generated

is periodi
 with period smaller than 200. This pro
edure gave us a set of admissible

sequen
es. For ea
h sequen
e s found using the Theorem 4 we have found the region W

s

in the state spa
e 
orresponding to this symboli
 sequen
e.

The results are 
olle
ted in Tables 1{6. The �rst and se
ond 
olumn of ea
h table

give the period of the sequen
e and the sequen
e itself. The last 
olumn gives the area of

the set of initial point 
orresponding to a given symboli
 sequen
e s and other sequen
es

obtained by shifting s (for example if s = (0 + +), then the area is the sum of areas of

sets of initial 
onditions with s = (0 + +), s = (+0+) and s = (+ + 0)). In the last row

we print the sum of the areas for all admissible symboli
 sequen
es found.

These results are also presented in graphi
 form in Fig. 9, where using di�erent 
olors

we plot sets in the state spa
e 
orresponding to admissible sequen
es found.

Let us dis
uss the results in more detail. As before the situation depends on whether

L is a multiple of p or not.

If L is not a multiple of p then from Theorem 2 it follows that the periodi
 traje
tory

lies on L ellipses and there are n=L points in ea
h ellipti
 set. Sin
e L 6= p it follows

that n=L > 1. So we have at least two points in ea
h ellipti
 set. Sin
e W

s

is 
onvex one


an prove that the 
enters of ellipses also belong to this set. In 
onsequen
e the polygon

W

s


ontains an ellipse, and in fa
t ea
h polygon side is tangent to the ellipse whi
h it


ontains. This is one of the di�eren
es between the 
ase of rational rotation number and

irrational one. In this last 
ase sets 
orresponding to admissible periodi
 sequen
es are

always ellipses.
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L s area

1 (0) 3:0899

2 (�+) 0:3443

3 (00+) 0:1155

3 (�00) 0:1155

12 (00 + � + � + � + 00+) 0:0257

12 (� + �00 � 00� + � +) 0:0257

18 (00 + � + �00 � 00 � + � +00+) 0:1725

78 (00+�+�00�00�+�+00+00+�+�00�00�+�+00+00+

�+�+�+00+00+�+�+�+00+00+�+�00�00�+�+00+)

0:0094

78 (0+00+�+�00�00�+�+00+00+�+�00�00�+�+�+�

00�00�+�+�+�00�00�+�+00+00+�+�00�00�+�+0)

0:0094

102 (00 + � + �00 � 00 � + � + � + � 00 � 00 � + � + � + � 00 �

00�+�+00 + 00 +�+�00� 00�+�+00 + 00 +�+�+�+

00 + 00 + � + � + � + 00 + 00 + � + �00 � 00� + � +00+)

0:0544

Total 3.9624

Table 3: Admissible symboli
 sequen
es for p=q = 1=5.

L s area

1 (0) 1:3863

1 (+) 0:3285

1 (�) 0:3285

4 (00 ��) 0:1937

4 (+ + 00) 0:1937

6 (+ + 0 ��0) 0:6809

6 (+ + 0000) 0:0238

6 (0000��) 0:0238

10 (+ + 000��000) 0:1673

10 (+ + + + 0 ����0) 0:1675

22 (+ + 000��0000 ��0000 ��000) 0:0010

22 (+ + 0000 + +000 ��000 + +0000) 0:0010

22 (+ + 000��00 ��00 ��00 ��000) 0:0128

22 (+ + 000��000 + +00 + +00 + +00) 0:0128

22 (+ + 0 ��0 + +0 ����0 + + + +0 ��0) 0:0301

22 (+ + 0 ��0 + +0 ��0 + + + +0 ����0) 0:0301

34 (+ + 0000 + +000 ��00 ��00 ��00 ��000 + +0000) 0:0345

34 (+ + 000��0000 ��0000 ��000 + +00 + +00 + +00) 0:0345

80 (+ + 0000 + +000��00��00��00��000 + +0000 + +0000 +

+000��00 ��00 ��00 ��000 + +0000 + +0000 + +0000)

0:0160

80 (++000��0000��0000��0000��0000��000++00++00+

+00 + +000��0000��0000 ��000 + +00 + +00 + +00)

0:0160

86 (++000��000++00++00++00++000��0000��0000��000+

+00 + +00 + +00 + +000��000 + +000��000 + +000��000)

0:0040

86 (++0000++000��00��00��00��000++000��000++000�

�000 + +000��000 + +000��00��00��00��000 + +0000)

0:0040

Total 3.6907

Table 4: Admissible symboli
 sequen
es for p=q = 3=7.
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L s area

1 (0) 3:1257

2 (�+) 0:1368

3 (00+) 0:1105

3 (�00) 0:1105

7 (0000 � 00) 0:0218

7 (000000+) 0:0218

10 (0000 � 0000+) 0:1287

24 (0000 � 000000� 000000� 0000+) 0:0036

24 (0000 � 0000 + 000000 + 000000+) 0:0036

38 (00 + � + �00 � 0000 + 0000� 00� + � +00 + 0000� 0000+) 0:0107

52 (0000�00�+�+00+0000�0000+00+�+�00�0000+000000+

000000+)

0:0485

52 (00 + � + �00 � 0000 + 0000 � 00 � + � +00 + 0000 � 000000 �

000000� 0000+)

0:0485

66 (0000� 00�+�+00 + 0000� 000000� 000000� 0000 + 00 +�+

�00 � 0000 + 000000 + 000000+)

0:0190

74 (0000� 0000 + 0000� 0000 + 0000� 0000 + 0000� 0000 + 0000�

0000 + 0000� 0000 + 000000 + 000000+)

0:0010

74 (0 + 0000� 0000 + 00 +�+�+�+�+�+�+�+ 00 + 0000�

000000� 000000� 0000 + 00 + � + � + � + � + � + � + � + 0)

0:0010

74 (000000 + 0000� 00�+�+�+�+�+�+�+� 00� 0000 +

0000� 00� +�+�+� +� +�+�+� 00� 0000 + 000000+)

0:0010

74 (0 + 0000� 000000� 000000� 0000 + 0000� 0000 + 0000� 0000 +

0000 � 0000 + 0000 � 0000 + 0000� 000)

0:0010

98 (0000�0000+0000�0000+000000+000000+0000�0000+0000�

0000+0000�0000+0000�000000�000000�0000+0000�0000+)

0:0052

102 (000000 + 000000 + 000000 + 000000 + 000000 + 0000 � 00 � + �

+�+�+00 + 0000� 000000� 000000� 0000 + 00 +�+�+�+

�00 � 0000 + 000000+)

0:0005

102 (00 + � + � + � + �00 � 0000 + 000000 + 000000 + 0000 � 00 �

+ � +� +� +00 + 0000� 000000� 000000� 000000� 000000�

000000� 000000� 0000+)

0:0005

102 (00+�+�+�+�00�0000+000000+000000+000000+000000+

0000� 00�+�+�+�+00 + 0000� 000000� 000000� 000000�

000000� 0000+)

0:0287

Total 3.8286

Table 5: Admissible symboli
 sequen
es for q=p = 2=9.
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L s area

1 (0) 1:6073

2 (�+) 0:6926

3 (�0+) 0:3640

3 (� + 0) 0:3640

4 (�00+) 0:1821

4 (� + 00) 0:1821

5 (�000+) 0:0414

5 (� + 000) 0:0414

5 (�0 + �+) 0:0414

5 (� + � + 0) 0:0414

52 (�000 +�00 +�0 +�0 +�+�+�+�+ 0�+�+0�+�+�

+ � + � 0 + �0 + �00 + �000+)

0:0122

52 (�0 +�+�+�+�+ 0�+0�+00�+000�+000�+00�+0�

+0 � + � + � + � + � 0 + �+)

0:0122

72 (�000 +�000 +�000 +�00 +�0 +�0 +�+�0 +�+�0 +�0 +

�00 + �000 + �000 + �000 + �000 + �000 + �000+)

0:0078

72 (� + 00� +000� +000� +000� +000� +000� +000� +000�

+000� +000� +00� +0 � +0� + � +0� + � +0� +0)

0:0078

74 (�000 +�00 +�0 +�0 +�+�+�+�+ 0�+0�+00�+000�

+000�+00�+0�+0�+�+�+�+� 0 +�0 +�00 +�000+)

0:1318

77 (�+�+0�+0�+00�+000�+000�+00�+0�+0�+�+�+�

+�0+�+�0+�+�0+�+�0+�+�0+�+�0+�+�0+�+�+)

0:0032

77 (�+�+0�+�+0�+�+0�+�+0�+�+�+�+�0+�0+�00+

�000+�000+�00+�0+�0+�+�+�+�+0�+�+0�+�+0)

0:0032

84 (�000+�000+�000+�00+�0+�0+�+�0+�+�0+�0+�00+

�000+�000+�00+�0+�0+�+�0+�+�0+�0+�00+�000+)

0:0247

84 (�+�+0�+0�+00�+000�+000�+000�+000�+00�+0�+0�

+�+0�+�+0�+0�+00�+000�+000�+00�+0�+0�+�+0)

0:0247

Total 3.7853

Table 6: Admissible symboli
 sequen
es for q=p = 1=12.
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(a)
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(f)
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Figure 9: Admissible sequen
es for (a) q=p = 1=4, (b) q=p = 1=5, (
) q=p = 1=6, (d)

q=p = 3=7, (e) q=p = 2=9, (f) q=p = 1=12
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If L is a multiple of p there is no 
orresponding ellipse, but still ea
h set is a 
onvex

polygon. Two examples are shown in Fig. 10(a,b). We were not able to �nd this degenerate


ase for p < 12. For q=p = 1=12 (and also for q=p = 5=12) su
h sequen
es exist. The

period of the sequen
e is L = 72 or L = 84 (see also Table 6). For this type of solutions

there is no 
orresponding ellipse. Sin
e L is a multiple of p we 
annot solve the periodi


point equation uniquely to �nd the ellipse 
enter. The two solutions we have found have

very interesting stru
ture. It seems that they are based on two periodi
 sequen
es with a

smaller period (in this parti
ular 
ase with L = 5, s

1

= (�000+) and s

2

= (0 + � + �),

plotted in Fig. 10(
)). It looks like the orbit spends long time around one of the orbits with

low period (several polygons tou
h the ellipse-like stru
ture) but after 
ertain number of

steps it separates from the short orbit (the traje
tory goes into a linear region di�erent

from the one where the whole ellipse goes), after a short time the traje
tory starts to

follow the se
ond low period orbit and the pro
edure repeats.

On basis of the the results and dis
ussion presented above one 
an make the following

observations:

1. The set of points 
orresponding to a given periodi
 symboli
 sequen
e is a 
onvex

polygon. It 
ontains the ellipse (apart from the 
ase when L is a multiple of p).

Usually for large L it approximates the ellipse quite well, although it always has to

be a polygon with at most n = 4 � l
m(p; L) sides.

2. Sometimes (q=p = 1=4, 1=6, and also 1=3) it is possible to �nd all admissible se-

quen
es. In these 
ases the 
orresponding sets of initial 
onditions 
over the set

[�1; 1℄� [�1; 1℄. For 1=4 all traje
tories has symboli
 sequen
e s = (0), and for 1=6

a traje
tory has a symboli
 sequen
e s = (0) or s = (�+), and there are no other

admissible symboli
 sequen
es.

3. For other 
ases it seems that one 
ould �nd periodi
 sequen
es with arbitrarily large

period. In su
h a 
ase full 
lassi�
ation of behavior in terms of symboli
 sequen
es

would not be possible.

4. Sets 
orresponding to low{period periodi
 sequen
es are large. In all 
ases 
onsid-

ered symboli
 sequen
es with period L < 200 allows to 
lassify a signi�
ant part of

the state spa
e (the 
orresponding sets o

upy more than 3.6/4 of the area of the

state spa
e[�1; 1℄ � [�1; 1℄ ). Usually sequen
es with longer period 
orrespond to

sets with smaller area, but there are some ex
eptions (see for example L = 12; 18

for q=p = 1=5).

5. Periodi
 admissible symboli
 sequen
es found are rather sparse. The number of
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(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
q/p=1/12

(b)

−1 −0.5 0 0.5 1
−1
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0

0.5

1
q/p=1/12

(
)

−1 −0.5 0 0.5 1
−1
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0

0.5

1
q/p=1/12

Figure 10: Degenerate admissible sequen
es for q=p = 1=12 (a) period{72 sequen
e, (b)

period{84 sequen
e, (
) short sequen
es (�000+) and (0 +�+�) serving as a \base" for

the degenerate sequen
es.
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admissible periodi
 sequen
es with the length L < 100 is of order of 20 or smaller,

whi
h is a very small number when 
ompared to the total number of symboli


sequen
es with these periods. This is related to the fa
t that the admissible periodi


symboli
 sequen
es must satisfy equation (29).

6. There exist periodi
 sequen
es with L being a multiple of p. This kind of periodi


orbits, with no 
orresponding ellipti
 sets is spe
i�
 to rational r. For irrational r

all periodi
 orbits are asso
iated with ellipse 
enters.

4 Dis
ussion and Con
lusion

In this paper, the periodi
 behaviors of the digital �lter with two's 
omplement arithmeti


for rational r have been studied. The relation between the period of periodi
 traje
to-

ries and their traveling patterns (symboli
 sequen
es) has been fully explored. To our

knowledge, it is the �rst time su
h relation in the digital �lter with two's 
omplement

arithmeti
 is fully explored for rational rs. However there are still several open questions

that remain to be solved.

1. Are there any points with non{periodi
 symboli
 sequen
es.

2. For p=q = 1=3; 1=4; 1=6 we have found all admissible symboli
 sequen
es. Are there

any other parameter values for whi
h there are �nitely many admissible sequen
es?

3. Are there any symboli
 sequen
es with L = p? This seems to be the simplest

degenerate 
ase. We were however not able to �nd su
h an example or to prove that

it is not possible, although from Equations (27) and (28) it 
ould be shown that

indeed in most 
ases it is not possible.

Solutions to these intriguing problems would 
ertainly further improve the understanding

of the periodi
 behaviors of the digital �lter with two's 
omplement arithmeti
.
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