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Abstrat

It is well known that the seond order digital �lter with two's omplement arith-

meti may exhibit haoti behaviors [1, 2℄. It is also known that for ertain lass

of �lter parameters, the seond order �lter exhibits periodi behaviors. This paper

studies the relation between the period of periodi trajetories and the period of

trajetory traveling patterns for the partiular lass of �lter parameters. A om-

plete lassi�ation of periodi behaviors is given and the underlying relations are

fully explored. The shape and layout of the regions in the state spae displaying

periodi behavior of the same type are fully examined. The mathematial analysis

is aompanied by onsiderable simulation results.

1 Introdution

In reent years, fast advanes in semiondutor devies, integrated iruits and omputer

tehnology have made it possible to have a wide range of appliations of digital �ltering

tehniques in areas suh as speeh and image proessing, onsumer eletronis, digital

ommuniations and ontrol systems [2℄. Digital �ltering tehniques provide an easy-to-

use and eÆient digital representation for signal proessing and transmission. Digital

�ltering is about transformations of the input data in the form of a sequene of numbers

�
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(disrete in nature) into another data set representing a sequene of numbers at the

output. Due to the nonlinearities introdued in real world hardware implementations,

omplex behaviors suh as osillations and irregular behaviors may our.

In the well known paper [1℄, haos in the following seond order digital �lter with two's

omplement arithmeti was studied

x(k + 1) = F (x(k)) = Ax(k) + Bs

k

(1)

where x = (x

1

; x

2

)

T

and

A =

�

0 1

b a

�

; B =

�

0

2

�

(2)

s

k

=

8

<

:

�1 if bx

1

(k) + ax

2

(k) � 1

1 if bx

1

(k) + ax

2

(k) < �1

0 otherwise

The system behaviors with parameters a and b on the stability margin jaj < 2; b = �1

were of interest. Under the ondition s

k

= 0 the equation (1) is linear and there exists a

linear transformation matrix

T =

�

1 0

os � sin �

�

; (3)

suh that the matrix A beomes

A = T

�

os � sin �

� sin � os �

�

T

�1

; (4)

where os � = a=2, 0 < � < �. The haoti region was shown to be loated on the

boundary of the stable region of the �lter. It was proved that for � = 2�r where r is

an irrational number, the system exhibits various haoti behaviors suh as ellipse like

fratals in the region �(x) � 1 where

�(x) =

r

(x

1

+ x

2

)

2

2 + a

+

(x

1

� x

2

)

2

2 � a

:

It was shown that for ertain values of initial onditions the symboli sequene is periodi,

whih orresponds to quasi{periodi trajetory �lling densely a �nite number of ellipses

or a periodi orbit visiting enters of these ellipses [1, 3℄. This is due to the property that

for an irrational r, A

K

6= I for any integer K. Although it is known that for rational r

the digital �lter may exhibit periodi behaviors [2℄ the relation between the rational r,

the periods of the trajetories and their traveling patterns have not been fully explored.

In this paper, we investigate the relation between the rational r, the period of the

periodi trajetories, and the period of the trajetory traveling pattern. A omplete
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lassi�ation of periodi behaviors is given and mathematial analysis of the underlying

relations is presented. The shape and layout of the regions in the state spae orresponding

to a given traveling pattern are examined. Considerable simulation studies are presented

to show the intriguing behaviors.

2 Simulation Results

It was shown in [1℄ that for irrational r, the haos starts when the parameter setting

is beyond its stability region. It is similar for rational r as well beause the overow

nonlinearity ativates in the same way.

Beause of the swithing value s, the phase plane is divided into three regions D

0

, D

+

,

D

�

de�ned as follows

D

0

= fx : �1 � �x

1

+ ax

2

< 1g;

D

+

= fx : �x

1

+ ax

2

� 1g;

D

�

= fx : �x

1

+ ax

2

< �1g;

whih orrespond to s

k

taking value 0; +1; �1 respetively. For a given initial onditions

the system (1) an be viewed as a linear system driven by the s sequene. There is a well-

de�ned map between the phase plane R

2

and the sequene spae � = fs = (s

0

; s

1

; � � � ) :

s

k

= �1; 0; 1; k = 0; 1; 2; � � � g [1℄. Let us de�ne L(s) as the period of the trajetory

traveling pattern, that is the symboli sequene, s. For example, if the trajetory moves

in a omplex periodi pattern, say

s = (� � �+1+1000�1�100 +1+1000�1�100 � � �)

then we say the period of the symboli sequene is L(�s) = 9 and we represent the period{L

symboli sequene as

s = (++000��00):

We also denote r = q=p where q and p are positive integers satisfying 2q < p and

gd(p; q) = 1 (gd stands for greatest ommon divisor). Note that sine os � = os(2���)

and the only parameter onsidered is a = 2 os �, it is suÆient to study � 2 (0; �), that

is 0 < 2q < p.

It an be shown that for arbitrary initial onditions the trajetory of the system (1)

for b = �1 and a 2 [�2; 2℄ after a �nite number of steps enters the region

I

2

= [�1; 1℄ � [�1; 1℄; (5)
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Figure 1: r = 1=6, x(0) = (0:5; 0:3)

T

,s = (0), L = 1, (a) The trajetory travels on an

ellipse in D

0

with period 6, (b) The s sequene of the last 50 iterations.

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

D0

D+

D−

(b)

450 455 460 465 470 475 480 485 490 495 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Iterations

 s
 s

eq
ue

nc
e

Figure 2: r = 1=6, x(0) = (0:9; 0:9)

T

, s = (0), L = 1, (a) The trajetory travels on an

ellipse in D

0

with period 6 but � > 1, (b) The s sequene of the last 50 iterations.

and remains in this set. Obviously all periodi orbits must be enlosed within I

2

. Hene

in our study we limit ourselves to the set I

2

of initial onditions and onsider the system

(1) as a map from I

2

to I

2

.

Numerous simulations were performed (with 500 iterations). Some typial behaviors

are depited in Figures 1{8. (The dashed lines show the boundaries between D

0

, D

+

and

D

�

. The dot-dashed line represents the ellipse �(x) = 1).

Figures 1 and 2 depit an interesting periodi behavior within D

0

(i.e., s

k

= 0 for

all k). The trajetory travels on a �nite set of points resembling an ellipti shape with

period equal to p. The period of the symboli sequene is L = 1. It is interesting to note

that Figure 2 shows that the periodi trajetory atually travels in a �nite set of states

outside the ellipse �(x) � 1 but still stays in D

0

, in ontrast to the irrational ase where

�(x(0)) > 1 implies that an overow s

k

6= 0 will our for some positive k.

Figures 3{8 present muh intriguing behaviors where the trajetory travels within

D

0

, D

+

and D

�

. Figures 3 and 4 illustrate that the trajetory travels in D

+

and D

�
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Figure 3: r = 1=12, x(0) = (0:9; 0:5)

T

, s = (+�000), L = 5, (a) The trajetory travels in

D

0

, D

+

and D

�

periodially with period 5 � 12 = 60, (b) The s sequene of the last 50

iterations.
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Figure 4: r = 1=11, x(0) = (0:8;�0:4)

T

, s = (�+), L = 2, (a) The trajetory travels

in D

+

and D

�

periodially with period 2 � 11 = 22, (b) The s sequene of the last 50

iterations.
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Figure 5: r = 1=10, x(0) = (0:9;�0:4)

T

, s = (+�), L = 2, (a) The trajetory travels in

D

+

and D

�

periodially with period 10, (b) The s sequene of the last 50 iterations.
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Figure 6: r = 7=15, x(0) = (0:5; 0:75)

T

, s = (����0++++0), L = 10, (a) The trajetory

travels in D

0

, D

+

and D

�

periodially with period 30, (b) The s sequene of the last 50

iterations.
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Figure 7: r = 1=15, x(0) = (0:85;�0:4)

T

, s = (�+�+0), L = 5, (a) The trajetory travels

in D

0

, D

+

and D

�

periodially with period 3� 5 = 15, (b) The s sequene of the last 50

iterations.
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Figure 8: r = 3=7, x(0) = (�0:4940; 0:8901)

T

, s = (++ 000��000), L = 10, (a) The

trajetory travels in D

0

, D

+

and D

�

periodially with period 10, (b) The s sequene of

the last 50 iterations.

6



periodially with periods 60 and 22 respetively whih are the multiple of p and L. Figure

5 shows the trajetory traveling in D

+

and D

�

periodially with period 10 whih is the

least ommon multiple of p and L. This partiular behavior an be identi�ed in Figures

6 and 7 where the trajetory travels in D

0

, D

+

and D

�

periodially with periods 30 and

15 respetively whih are the least ommon multiples of p and L. Figure 8 desribes an

even more interesting ase beause the period of trajetory is neither a multiple of p nor

a divisor of p.

The question to be asked is, what is the relation between the period of the system

periodi behaviors, the period of their traveling patterns L and the parameter q=p? This

question will be addressed in the following setions.

3 Analysis of Periodi Behaviors

In the following we assume that the rotation number of the onsidered system is rational,

i.e. a = 2 os(2�q=p) and q and p do not have ommon fators larger than one (gd(q; p) =

1).

Let us de�ne three aÆne maps:

F

s

(x) = Ax + bs; for s = �1; 0;+1: (6)

Let us onsider a trajetory starting at the initial point x(0) and assume that x(0)

orresponds to the symboli sequene s = (s

0

; s

1

; s

2

; : : : ). First let us observe that the

kth iteration of the system starting from x(0) an be omputed as

x(k) = (F

s

k�1

Æ � � � Æ F

s

1

Æ F

s

0

)(x(0)) = A

k

x(0) +

k�1

X

i=0

A

k�1�i

Bs

i

; k � 0: (7)

See that for the �xed symboli sequene F

s

k�1

Æ � � � Æ F

s

1

Æ F

s

0

is an aÆne map. We will

show that periodi orbits of the system (1) are losely related to the situation when this

map beomes identity for partiular hoies of symboli sequene s = (s

0

; s

1

; : : : ; s

k�1

).

The equation (7) an be rewritten in the following form:

x(k) = A

k

x(0) + 	

k

� (s

0

; s

1

; : : : ; s

k�1

)

T

; (8)

where

	

k

=

�

A

k�1

B; : : : ; A

2

B;AB;B

�

: (9)

Now let us assume that x(0) is a periodi point, i.e. there exist n > 0 suh that

x(n) = x(0). We say that n is the minimum period if x(k) 6= x(0) for all k = 1; 2; : : : ; n�1.

Obviously if x(0) is periodi then the symboli sequene is also periodi. Its period an
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in general be smaller than n. The period of the symboli sequene, L, must be a divisor

of n. In theory, all period{n orbits for given values of parameters an be obtained by

solving the equation

x(0) = A

n

x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

for all symboli sequenes s = (s

0

; s

1

; � � � ; s

L�1

), where L is a divisor of n. This method

for �nding periodi solutions is very ine�etive. In order to �nd all period{n orbits one

needs to solve 3

n

linear equations.

In this setion we investigate the relation between the period n of the orbit, the period

L of the symboli sequene and parameters of the system (spei�ally the parameter p).

We show that given L and p we an fully lassify periodi orbits.

This will allow us to analyze the behavior shown in Figures 1{8. Note that in all the

simulations L 6= p. Furthermore, the disrete states appear to be grouped into lusters

and the number of lusters is the same as the period of the symboli sequene (apart from

the ase presented in Fig. 8). In the following, we will present theorems whih an be

used to desribe all these behavior types.

The �rst theorem states that if a point has periodi symboli sequene with period L

then it is periodi with period n being the least ommon multiple (lm) of L and p.

Theorem 1. Let us assume that the symboli sequene s of the trajetory starting at x(0)

has period L (s = (s

0

; s

1

; : : : ; s

L�1

)). Let us de�ne n as the least ommon multiple of p

and L, i.e. n = lm(p; L), and let us extend s periodially so that the sequene s has

length n. Then

y

s

= 	

n

s

T

=

n�1

X

i=0

A

n�i�1

Bs

i

= 0: (10)

The map F

s

n�1

Æ � � �ÆF

s

1

ÆF

s

0

is identity and x(0) is periodi with period n (not neessary

minimum).

Proof. First let us observe that

A

k

= T

�

os(2�qk=p) sin(2�qk=p)

� sin(2�qk=p) os(2�qk=p)

�

T

�1

: (11)

It follows that A

p

= I and sine n is a multiple of p we have A

n

= I. The symboli

sequene s is periodi and then aording to (8) we have

x((k + 1)n) = A

n

x(kn) + 	

n

s

T

= x(kn) + y

s

; for k � 0: (12)
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Hene

x(kn) = x(0) + ky

s

; for all k � 0:

Now suppose y

s

6= [0; 0℄

T

. Then it is lear that there exists k > 0 suh that x(kn) is arbi-

trary far from x(0) and in partiular x(kn) 62 [�1; 1℄� [�1; 1℄, whih is a ontradition.

Thus y

s

= 0. Aording to (7) F

s

n�1

Æ � � � Æ F

s

1

Æ F

s

0

is identity and x(n) = x(0).

The above theorem tells that if the symboli sequene is periodi the trajetory also has

to be periodi and the period must be a multiple of L not larger than n = lm(L; p). This

is all we an say in the general ase. Further desription is possible when we onsider two

ases. The �rst ase, whih is observed in most experiments (and in all of the examples

shown in Figures 1{8) takes plae when L is not a multiple of p. It is studied in the

following setion. The seond ase, when L is a multiple of p happens very infrequently.

It will be studied later.

3.1 L is not a multiple of p

We �rst derive results for the ase when L is not a multiple of p. We will prove the

results on the minimum period of the trajetory in the ase. We will show that in this

ase the trajetory onsists of points lying on L ellipses, whih enters are de�ned by the

symboli sequene. Before we proeed, we introdue the onept of ellipti sets. Consider

the di�erene equation

z(k + 1) = Az(k);

where z(k) 2 R

2

and A is the same as de�ned in (2) with b = �1 and jaj < 2. One an

easily hek that for the energy type funtion

V (z) = z

2

2

� az

1

z

2

� bz

2

1

= (z

2

�

a

2

z

1

)

2

+ (�b�

a

2

4

)z

2

1

; (13)

and for any positive onstant  > 0, V (z) =  represents an ellipse for x 2 R

2

[5℄. In fat,

this is the orbit where the system state travels for s = (0). One an also easily verify

that V (z(k + 1)) = V (z(k)) = V (z(0)). If there is a set of states fz(0); � � � ; z(m � 1)g

suh that eah member z(k) of the set satis�es V (z(k)) = V (z(0)), then we all the set

an ellipti set. It is lear that the points z(k) lie on the ellipse entered at the origin.

The size of the ellipse is de�ned by z(0). In the following we will also onsider ellipti

sets entered at points other than the origin. This onept will be used in the following

setions.
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Theorem 2. Let us assume that the symboli sequene s of the initial point starting at

x(0) has period L, whih is not a multiple of p. Let us de�ne the points

z

i

= (I � A

L

)

�1

	

L

s

i

; for i = 0; : : : ; L� 1 (14)

where 	

L

is de�ned in (9) and s

i

is the symboli sequene obtained by shifting s to the

right i{times, i.e., s

i

= (s

i

; s

i+1

; � � � ; s

L�1

; s

0

; � � � ; s

i�1

)

T

.

1. If x(0) 6= z

0

then the trajetory starting at x(0) has the minimum period n =

lm(p; L). Furthermore, the points of the periodi trajetory are grouped into L

ellipti sets of points entered at z

i

and eah of the ellipti sets is omposed of n=L

points.

2. If x(0) = z

0

then the trajetory starting at x(0) has the minimum period L and

x(i) = z

i(mod L)

.

Proof. First let us observe that det(I�A

L

) = 2(1� os(2�qL=p)) 6= 0, sine gd(p; q) = 1

and L is not a multiple of p. Let us denote by (z

0

; z

1

: : : ; z

L�1

) the unique solution of the

set of equations

z

1

= Az

0

+ Bs

0

.

.

.

z

L�1

= Az

L�2

+ Bs

L�2

(15)

z

0

= Az

L�1

+ Bs

L�1

Straightforward algebrai manipulations of (15) yield

(I � A

L

)z

0

= 	

L

(s

0

; s

1

; � � � ; s

L�1

)

T

= 	

L

s

0

;

(I � A

L

)z

1

= 	

L

(s

1

; � � � ; s

L�1

; s

0

)

T

= 	

L

s

1

;

.

.

. (16)

(I � A

L

)z

L�1

= 	

L

(s

L�1

; s

0

; � � � ; s

L�2

)

T

= 	

L

s

L�1

:

Sine det(I � A

L

) 6= 0 it follows that the solutions z

i

are uniquely determined as

z

i

= (I � A

L

)

�1

	

L

s

i

; for i = 0; : : : ; L� 1:

Let n be the least ommon multiple of p and L. De�ne two integers n

p

= n=p and

n

L

= n=L.

A trajetory starting from x(i + jL) (where i = 0; 1; : : : ; L � 1 and j � 0) has a

periodi symboli sequene s

i

. Hene it an be easily derived from (8) that

x(i + (j + 1)L) = A

L

x(i + jL) + 	

L

s

i

; for i = 0; : : : ; L� 1; j � 0: (17)

10



Denote y

i

(j) = x(i + jL) � z

i

for i = 0; 1; : : : ; L � 1. y

i

(j) is the oordinate of the

point x(i + jL) after moving the origin to z

i

. Then we have

y

i

(j + 1) = x(i + (j + 1)L) � z

i

= A

L

x(i + jL) + 	

L

s

i

� z

i

(18)

From (17), we have 	s

i

= z

i

� A

L

z

i

, then (18) beomes

y

i

(j + 1) = A

L

x(i + jL) � A

L

z

i

= A

L

(x(jL) � z

i

) = A

L

y

i

(j) (19)

Iterating (19) n

L

times yields

y

i

(j + n

L

) = A

n

L

L

y

i

(j) = A

n

y

i

(j) = A

pn

p

y

i

(j) = y

i

(j); (20)

sine A

p

= I.

Equation (20) demonstrates two fats. First, it indiates that the least ommon mul-

tiple n of p and L is the period of the trajetory. Indeed x(n) = x(n

L

L) = y

0

(n

L

) + z

0

=

y

0

(0) + z

0

= x(0) whih proves that n is the period. Seond, if x(0) is not equal to z

0

then equation (20) means that the suessive (every L steps) states are on an ellipti set

in the x

1

{x

2

phase plane entered at z

i

. The trajetory is then divided into L ellipti sets

fx(i + jL) = z

i

+ y

i

(j) = z

i

+ A

j

y

i

(0) : j = 0; : : : ; n

L

� 1g

L�1

i=0

; (21)

From (21) one an easily see that for a �xed i the points x(i + jL) are loated on the

ellipse entered at z

i

. Thus we have proved that the points of periodi trajetory are

grouped into L ellipti sets entered at z

i

(i = 0; 1; : : : ; L� 1). Eah ellipti set onsists

of n

L

= n=L points.

If x(0) = z

0

then y

i

(j) = 0 for all i = 0; 1; : : : ; L�1 and j � 0. In onsequene x(i) = z

i

for i = 0; 1; : : : ; L�1 and after L steps the trajetory returns to the initial ondition. This

ase an be onsidered as the ith ellipti set ompressed into its orresponding enter.

Theorem 2 an in fat explain all the behaviors in Figures 1{8. Figures 1 and 2

orrespond to a single enter (beause of L = 1) with trajetories traveling on an ellipti

set surrounding the enter. Figures 3 and 4 are typial behaviors where 5 and 2 ellipti

sets are found respetively. Figures 5{7 are another examples. The trajetories travel

periodially on L ellipti sets, eah of whih ontains the number of states equal to

lm(p; L)=L. Figure 8 presents a degenerate ase, whih is the subjet of the seond part

of the Theorem 2, where eah ellipti set is shrunk to its enter.

3.2 L is a multiple of p

Another ase that needs to be explored is the ase when L is a multiple of p. As demon-

strated in the proof of Theorem 2 in this ase det(I � A

L

) = 2(1 � os(2�qL=p)) = 0. It

11



is not possible to �nd a unique solution of the equation (15). In onsequene there is no

orresponding ellipti sets. This situation is analyzed in the following theorem.

Theorem 3. Let us assume that the symboli sequene s of the trajetory starting at x(0)

has period L, whih is a multiple of p. Then L is the minimum period of x(0).

Proof. Sine L is a multiple of p it is lear that L = lm(p; L). From Theorem 1 it

follows that L is the period of x(0). It must be the minimum period sine period of the

point in the state spae annot be smaller than the period of the orresponding symboli

sequene.

Although Theorem 3 states that if there exists a period{L symboli sequene s where

L is a multiple of p, then x(L) = x(0), it does not guarantee that suh a symboli sequene

does exist. We now look at some onstraints that limit the existene of admissible symboli

sequenes. Let n = lm(p; L) and n = pn

p

, where n

p

is a positive integer. Sine A

p

= I,

then we have

x(n) = A

n

x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

= x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

(22)

From Theorem 1 it follows that x(n) = x(0) and

y

s

=

n�1

X

i=0

A

n�i�1

Bs

i

= 0; ; (23)

whih an be reast as

n�1

X

i=0

A

n�i�1

Bs

i

=

n

p

�1

X

i=0

p�1

X

j=0

A

p�j�1

Bs

j+ip

=

p�1

X

j=0

A

p�1�j

B

n

p

�1

X

i=0

s

j+ip

= 0: (24)

Denote ŝ

j

=

P

n

p

�1

i=0

s

j+ip

, then (24) beomes

[A

p�1

B;A

p�2

B; � � � ; B℄(ŝ

0

; ŝ

1

; � � � ; ŝ

p�1

)

T

= 0 (25)

We an further explore the harateristi of (25). Beause of (3) and (4), we have

A

k

= T

�

os k� sin k�

� sin k� os k�

�

T

�1

= sin

�1

�

�

� sin(k � 1)� sin k�

� sin k� sin(k + 1)�

�

where � = 2�=p. Hene sine sin � 6= 0, then (25) is equivalent to

�

sin(p� 1)� sin(p� 2)� � � � sin 2� sin � 0

0 sin(p� 1)� � � � � � � sin 2� sin �

�

ŝ

T

= 0 (26)

where ŝ = (ŝ

0

; ŝ

1

; � � � ; ŝ

L�1

). Note that sin(p�i)� = sin((p�i)(2�=p)) = sin(2��2�i=p) =

� sin i�. If p is odd, then (26) beomes

�

� sin � � sin 2� � � � � sin

p�1

2

� sin

p�1

2

� � � � sin � 0

0 � sin � � sin 2� � � � � sin

p�1

2

� sin

p�1

2

� � � � sin �

�

ŝ

T

= 0

12



whih leads to

(p�1)=2

X

i=1

(ŝ

i�1

� ŝ

p�1�i

) sin i� = 0;

(p�1)=2

X

i=1

(ŝ

i

� ŝ

p�i

) sin i� = 0 (27)

If p is even, then (26) beomes

�

� sin � � � � � sin

p�2

2

� 0 sin

p�2

2

� � � � sin � 0

0 � sin � � � � � sin

p�2

2

� 0 sin

p�2

2

� � � � sin �

�

ŝ

T

= 0

whih leads to

p�2

2

X

i=1

(ŝ

i�1

� ŝ

p�1�i

) sin i� = 0;

p�2

2

X

i=1

(ŝ

i

� ŝ

p�i

) sin i� = 0 (28)

The equations (27) and (28) an be used to investigate the existene of admissible

symboli sequenes. Any admissible symboli sequene has to satisfy either (27) or (28).

Generally, it is diÆult to solve (27) and (28) to �nd admissible symboli sequenes.

Furthermore, it appears to be few symboli sequenes whih satisfy (27) or (28). In

the following subsetion, the problem of admissible sequenes will be examined using a

di�erent approah.

3.3 Admissible sequenes

In this setion we investigate the problem of shape and layout of the sets in the state

spae orresponding to a given symboli sequene. Let us assume that we have a period{

L symboli sequene s = (s

0

; s

1

; : : : ; s

L�1

). We would like to �nd the set of points in

the state spae, whih produes this symboli sequene. We all a symboli sequene

admissible if there exists a point in the state spae whih realizes this sequene.

Let us denote by G

s

the inverse of F

s

(x) = Ax + bs, for s = �1; 0;+1. For b 6= 0 the

maps G

s

are well de�ned and an be omputed as G

s

(x) = A

�1

(x� bs). First we present

a theorem whih allows to e�etively �nd the set in the state spae orresponding to a

given periodi symboli sequene.

Theorem 4. Let s = (s

0

; s

1

; : : : ; s

L�1

) be the periodi symboli sequene. Let n =

lm(L; p). The symboli sequene s is admissible if and only if the following two on-

ditions are satis�ed

y

s

= 	

n

s

T

=

n�1

X

i=0

A

n�i�1

Bs

i

= 0: (29)

W

s

=

n�1

Y

i=0

G

s

0

ÆG

s

1

Æ � � � ÆG

s

i

�1

(I

2

) 6= ;; (30)

If s is admissible then the set of points whih realize s is W

s

.
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Proof. Let us assume that the periodi symboli sequene s = (s

0

; s

1

; : : : ; s

L�1

) is ad-

missible. It means that there exists a point x(0) whih realizes this sequene. From the

Theorem 1 it follows that 	

n

s

T

= 0, i.e. the ondition (29) is satis�ed. The fat that x(0)

orresponds to the symboli sequene s = (s

0

; s

1

; : : : ; s

n�1

) is equivalent to the following

set of onditions:

x(0) 2 I

2

; F

s

0

(x(0)) 2 I

2

; F

s

1

(F

s

0

(x(0))) 2 I

2

; : : : ; F

s

n�1

(: : : F

s

1

(F

s

0

(x(0)) : : : ) 2 I

2

: (31)

This in turn is equivalent to

x(0) 2 I

2

; x(0) 2 G

s

0

(I

2

); x(0) 2 G

s

0

ÆG

s

1

(I

2

); : : : ; x(0) 2 G

s

0

ÆG

s

1

Æ � � � ÆG

s

n

�1

(I

2

):

(32)

In onsequene the intersetion (30) is not empty as it ontains x(0).

Now we prove that if the onditions (29) and (30) hold then the sequene is admissible.

Let us hoose a point x(0) belonging to the produt (30). It follows that

x(0) 2 I

2

; F

s

0

(x(0)) 2 I

2

; F

s

1

(F

s

0

(x(0))) 2 I

2

; : : : ; F

s

n�1

(: : : F

s

1

(F

s

0

(x(0)) : : : ) 2 I

2

: (33)

Hene the �rst n elements of the symboli sequene of x(0) are s

0

; s

1

; : : : ; s

n�1

. It follows

from (7) and (29) that

x(n) = A

n

x(0) +

n�1

X

i=0

A

n�i�1

Bs

i

= x(0): (34)

The point x(0) is periodi and hene it has periodi symboli sequene s = (s

0

; s

1

; : : : ; s

n�1

).

In this way we proved that s is admissible.

From the above theorem it follows that the set of points in the state spae orrespond-

ing to a partiular symboli sequene is the intersetion of n sets. Eah of these sets is

a onvex quadrangle (the maps G

s

0

Æ G

s

1

Æ � Æ G

s

i

�1

are aÆne), hene the intersetion

must be either empty or must be a onvex polygon with at most 4n edges. I may also

happen that the intersetion is a degenerate polygon with empty interior (a segment or

a point), although we have not observed suh ases. This theorem provides an eÆient

method for �nding the set in the state spae orresponding to the given symboli sequene.

First we hek the ondition (29). If y

s

6= 0 the symboli sequene is not admissible. In

the opposite ase we �nd the produt (30). This whole proedure an be implemented

on a omputer. Finding intersetion of two onvex polygons is a standard problem of

omputational geometry, and algorithms to perform this task are widely available [4℄.

Using the above theorem we have found sets of points in the state spae realizing

di�erent symboli sequenes for several values of parameters. We have onsidered q=p =

14



L s area

1 (0) 4:0000

Total 4.0000

Table 1: Admissible symboli sequenes for q=p = 1=4.

L s area

1 (0) 3:0000

2 (+�) 1:0000

Total 4.0000

Table 2: Admissible symboli sequenes for q=p = 1=6.

1=4; 1=5; 1=6; 3=7; 2=9; 1=12. As mentioned before one ould �nd all period{n yles by

onsidering all period{n symboli sequenes and heking 3

n

ases. This proedure is

however not very eÆient and allows �nding only periodi trajetories with a small period.

We have followed a di�erent approah. For eah parameter values we have generated

trajetories starting from many initial onditions uniformly distributed in the state spae.

For eah of the trajetories we have heked whether the symboli sequene generated

is periodi with period smaller than 200. This proedure gave us a set of admissible

sequenes. For eah sequene s found using the Theorem 4 we have found the region W

s

in the state spae orresponding to this symboli sequene.

The results are olleted in Tables 1{6. The �rst and seond olumn of eah table

give the period of the sequene and the sequene itself. The last olumn gives the area of

the set of initial point orresponding to a given symboli sequene s and other sequenes

obtained by shifting s (for example if s = (0 + +), then the area is the sum of areas of

sets of initial onditions with s = (0 + +), s = (+0+) and s = (+ + 0)). In the last row

we print the sum of the areas for all admissible symboli sequenes found.

These results are also presented in graphi form in Fig. 9, where using di�erent olors

we plot sets in the state spae orresponding to admissible sequenes found.

Let us disuss the results in more detail. As before the situation depends on whether

L is a multiple of p or not.

If L is not a multiple of p then from Theorem 2 it follows that the periodi trajetory

lies on L ellipses and there are n=L points in eah ellipti set. Sine L 6= p it follows

that n=L > 1. So we have at least two points in eah ellipti set. Sine W

s

is onvex one

an prove that the enters of ellipses also belong to this set. In onsequene the polygon

W

s

ontains an ellipse, and in fat eah polygon side is tangent to the ellipse whih it

ontains. This is one of the di�erenes between the ase of rational rotation number and

irrational one. In this last ase sets orresponding to admissible periodi sequenes are

always ellipses.
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L s area

1 (0) 3:0899

2 (�+) 0:3443

3 (00+) 0:1155

3 (�00) 0:1155

12 (00 + � + � + � + 00+) 0:0257

12 (� + �00 � 00� + � +) 0:0257

18 (00 + � + �00 � 00 � + � +00+) 0:1725

78 (00+�+�00�00�+�+00+00+�+�00�00�+�+00+00+

�+�+�+00+00+�+�+�+00+00+�+�00�00�+�+00+)

0:0094

78 (0+00+�+�00�00�+�+00+00+�+�00�00�+�+�+�

00�00�+�+�+�00�00�+�+00+00+�+�00�00�+�+0)

0:0094

102 (00 + � + �00 � 00 � + � + � + � 00 � 00 � + � + � + � 00 �

00�+�+00 + 00 +�+�00� 00�+�+00 + 00 +�+�+�+

00 + 00 + � + � + � + 00 + 00 + � + �00 � 00� + � +00+)

0:0544

Total 3.9624

Table 3: Admissible symboli sequenes for p=q = 1=5.

L s area

1 (0) 1:3863

1 (+) 0:3285

1 (�) 0:3285

4 (00 ��) 0:1937

4 (+ + 00) 0:1937

6 (+ + 0 ��0) 0:6809

6 (+ + 0000) 0:0238

6 (0000��) 0:0238

10 (+ + 000��000) 0:1673

10 (+ + + + 0 ����0) 0:1675

22 (+ + 000��0000 ��0000 ��000) 0:0010

22 (+ + 0000 + +000 ��000 + +0000) 0:0010

22 (+ + 000��00 ��00 ��00 ��000) 0:0128

22 (+ + 000��000 + +00 + +00 + +00) 0:0128

22 (+ + 0 ��0 + +0 ����0 + + + +0 ��0) 0:0301

22 (+ + 0 ��0 + +0 ��0 + + + +0 ����0) 0:0301

34 (+ + 0000 + +000 ��00 ��00 ��00 ��000 + +0000) 0:0345

34 (+ + 000��0000 ��0000 ��000 + +00 + +00 + +00) 0:0345

80 (+ + 0000 + +000��00��00��00��000 + +0000 + +0000 +

+000��00 ��00 ��00 ��000 + +0000 + +0000 + +0000)

0:0160

80 (++000��0000��0000��0000��0000��000++00++00+

+00 + +000��0000��0000 ��000 + +00 + +00 + +00)

0:0160

86 (++000��000++00++00++00++000��0000��0000��000+

+00 + +00 + +00 + +000��000 + +000��000 + +000��000)

0:0040

86 (++0000++000��00��00��00��000++000��000++000�

�000 + +000��000 + +000��00��00��00��000 + +0000)

0:0040

Total 3.6907

Table 4: Admissible symboli sequenes for p=q = 3=7.
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L s area

1 (0) 3:1257

2 (�+) 0:1368

3 (00+) 0:1105

3 (�00) 0:1105

7 (0000 � 00) 0:0218

7 (000000+) 0:0218

10 (0000 � 0000+) 0:1287

24 (0000 � 000000� 000000� 0000+) 0:0036

24 (0000 � 0000 + 000000 + 000000+) 0:0036

38 (00 + � + �00 � 0000 + 0000� 00� + � +00 + 0000� 0000+) 0:0107

52 (0000�00�+�+00+0000�0000+00+�+�00�0000+000000+

000000+)

0:0485

52 (00 + � + �00 � 0000 + 0000 � 00 � + � +00 + 0000 � 000000 �

000000� 0000+)

0:0485

66 (0000� 00�+�+00 + 0000� 000000� 000000� 0000 + 00 +�+

�00 � 0000 + 000000 + 000000+)

0:0190

74 (0000� 0000 + 0000� 0000 + 0000� 0000 + 0000� 0000 + 0000�

0000 + 0000� 0000 + 000000 + 000000+)

0:0010

74 (0 + 0000� 0000 + 00 +�+�+�+�+�+�+�+ 00 + 0000�

000000� 000000� 0000 + 00 + � + � + � + � + � + � + � + 0)

0:0010

74 (000000 + 0000� 00�+�+�+�+�+�+�+� 00� 0000 +

0000� 00� +�+�+� +� +�+�+� 00� 0000 + 000000+)

0:0010

74 (0 + 0000� 000000� 000000� 0000 + 0000� 0000 + 0000� 0000 +

0000 � 0000 + 0000 � 0000 + 0000� 000)

0:0010

98 (0000�0000+0000�0000+000000+000000+0000�0000+0000�

0000+0000�0000+0000�000000�000000�0000+0000�0000+)

0:0052

102 (000000 + 000000 + 000000 + 000000 + 000000 + 0000 � 00 � + �

+�+�+00 + 0000� 000000� 000000� 0000 + 00 +�+�+�+

�00 � 0000 + 000000+)

0:0005

102 (00 + � + � + � + �00 � 0000 + 000000 + 000000 + 0000 � 00 �

+ � +� +� +00 + 0000� 000000� 000000� 000000� 000000�

000000� 000000� 0000+)

0:0005

102 (00+�+�+�+�00�0000+000000+000000+000000+000000+

0000� 00�+�+�+�+00 + 0000� 000000� 000000� 000000�

000000� 0000+)

0:0287

Total 3.8286

Table 5: Admissible symboli sequenes for q=p = 2=9.
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L s area

1 (0) 1:6073

2 (�+) 0:6926

3 (�0+) 0:3640

3 (� + 0) 0:3640

4 (�00+) 0:1821

4 (� + 00) 0:1821

5 (�000+) 0:0414

5 (� + 000) 0:0414

5 (�0 + �+) 0:0414

5 (� + � + 0) 0:0414

52 (�000 +�00 +�0 +�0 +�+�+�+�+ 0�+�+0�+�+�

+ � + � 0 + �0 + �00 + �000+)

0:0122

52 (�0 +�+�+�+�+ 0�+0�+00�+000�+000�+00�+0�

+0 � + � + � + � + � 0 + �+)

0:0122

72 (�000 +�000 +�000 +�00 +�0 +�0 +�+�0 +�+�0 +�0 +

�00 + �000 + �000 + �000 + �000 + �000 + �000+)

0:0078

72 (� + 00� +000� +000� +000� +000� +000� +000� +000�

+000� +000� +00� +0 � +0� + � +0� + � +0� +0)

0:0078

74 (�000 +�00 +�0 +�0 +�+�+�+�+ 0�+0�+00�+000�

+000�+00�+0�+0�+�+�+�+� 0 +�0 +�00 +�000+)

0:1318

77 (�+�+0�+0�+00�+000�+000�+00�+0�+0�+�+�+�

+�0+�+�0+�+�0+�+�0+�+�0+�+�0+�+�0+�+�+)

0:0032

77 (�+�+0�+�+0�+�+0�+�+0�+�+�+�+�0+�0+�00+

�000+�000+�00+�0+�0+�+�+�+�+0�+�+0�+�+0)

0:0032

84 (�000+�000+�000+�00+�0+�0+�+�0+�+�0+�0+�00+

�000+�000+�00+�0+�0+�+�0+�+�0+�0+�00+�000+)

0:0247

84 (�+�+0�+0�+00�+000�+000�+000�+000�+00�+0�+0�

+�+0�+�+0�+0�+00�+000�+000�+00�+0�+0�+�+0)

0:0247

Total 3.7853

Table 6: Admissible symboli sequenes for q=p = 1=12.
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Figure 9: Admissible sequenes for (a) q=p = 1=4, (b) q=p = 1=5, () q=p = 1=6, (d)

q=p = 3=7, (e) q=p = 2=9, (f) q=p = 1=12
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If L is a multiple of p there is no orresponding ellipse, but still eah set is a onvex

polygon. Two examples are shown in Fig. 10(a,b). We were not able to �nd this degenerate

ase for p < 12. For q=p = 1=12 (and also for q=p = 5=12) suh sequenes exist. The

period of the sequene is L = 72 or L = 84 (see also Table 6). For this type of solutions

there is no orresponding ellipse. Sine L is a multiple of p we annot solve the periodi

point equation uniquely to �nd the ellipse enter. The two solutions we have found have

very interesting struture. It seems that they are based on two periodi sequenes with a

smaller period (in this partiular ase with L = 5, s

1

= (�000+) and s

2

= (0 + � + �),

plotted in Fig. 10()). It looks like the orbit spends long time around one of the orbits with

low period (several polygons touh the ellipse-like struture) but after ertain number of

steps it separates from the short orbit (the trajetory goes into a linear region di�erent

from the one where the whole ellipse goes), after a short time the trajetory starts to

follow the seond low period orbit and the proedure repeats.

On basis of the the results and disussion presented above one an make the following

observations:

1. The set of points orresponding to a given periodi symboli sequene is a onvex

polygon. It ontains the ellipse (apart from the ase when L is a multiple of p).

Usually for large L it approximates the ellipse quite well, although it always has to

be a polygon with at most n = 4 � lm(p; L) sides.

2. Sometimes (q=p = 1=4, 1=6, and also 1=3) it is possible to �nd all admissible se-

quenes. In these ases the orresponding sets of initial onditions over the set

[�1; 1℄� [�1; 1℄. For 1=4 all trajetories has symboli sequene s = (0), and for 1=6

a trajetory has a symboli sequene s = (0) or s = (�+), and there are no other

admissible symboli sequenes.

3. For other ases it seems that one ould �nd periodi sequenes with arbitrarily large

period. In suh a ase full lassi�ation of behavior in terms of symboli sequenes

would not be possible.

4. Sets orresponding to low{period periodi sequenes are large. In all ases onsid-

ered symboli sequenes with period L < 200 allows to lassify a signi�ant part of

the state spae (the orresponding sets oupy more than 3.6/4 of the area of the

state spae[�1; 1℄ � [�1; 1℄ ). Usually sequenes with longer period orrespond to

sets with smaller area, but there are some exeptions (see for example L = 12; 18

for q=p = 1=5).

5. Periodi admissible symboli sequenes found are rather sparse. The number of
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Figure 10: Degenerate admissible sequenes for q=p = 1=12 (a) period{72 sequene, (b)

period{84 sequene, () short sequenes (�000+) and (0 +�+�) serving as a \base" for

the degenerate sequenes.
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admissible periodi sequenes with the length L < 100 is of order of 20 or smaller,

whih is a very small number when ompared to the total number of symboli

sequenes with these periods. This is related to the fat that the admissible periodi

symboli sequenes must satisfy equation (29).

6. There exist periodi sequenes with L being a multiple of p. This kind of periodi

orbits, with no orresponding ellipti sets is spei� to rational r. For irrational r

all periodi orbits are assoiated with ellipse enters.

4 Disussion and Conlusion

In this paper, the periodi behaviors of the digital �lter with two's omplement arithmeti

for rational r have been studied. The relation between the period of periodi trajeto-

ries and their traveling patterns (symboli sequenes) has been fully explored. To our

knowledge, it is the �rst time suh relation in the digital �lter with two's omplement

arithmeti is fully explored for rational rs. However there are still several open questions

that remain to be solved.

1. Are there any points with non{periodi symboli sequenes.

2. For p=q = 1=3; 1=4; 1=6 we have found all admissible symboli sequenes. Are there

any other parameter values for whih there are �nitely many admissible sequenes?

3. Are there any symboli sequenes with L = p? This seems to be the simplest

degenerate ase. We were however not able to �nd suh an example or to prove that

it is not possible, although from Equations (27) and (28) it ould be shown that

indeed in most ases it is not possible.

Solutions to these intriguing problems would ertainly further improve the understanding

of the periodi behaviors of the digital �lter with two's omplement arithmeti.
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