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In recent years, fast advances in semiconductor devices, integrated circuits and computer
technology have made it possible to have a wide range of applications of digital filtering
techniques in areas such as speech and image processing, consumer electronics, digital
communications and control systems [2]. Digital filtering techniques provide an easy-to-
use and efficient digital representation for signal processing and transmission. Digital

filtering is about transformations of the input data in the form of a sequence of numbers
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(discrete in nature) into another data set representing a sequence of numbers at the
output. Due to the nonlinearities introduced in real world hardware implementations,
complex behaviors such as oscillations and irregular behaviors may occur.

In the well known paper [1], chaos in the following second order digital filter with two’s

complement arithmetic was studied

z(k+1)=F(z(k)) = Azx(k) + Bsg (1)

(1) ()

sg =4 1 if bwy(k) + axqe(k) < —1
0  otherwise

where x = (z1, x9)" and

The system behaviors with parameters a and b on the stability margin |a| < 2, b= —1
were of interest. Under the condition s, = 0 the equation (1) is linear and there exists a

linear transformation matrix

1 0
T_<0089 sin0>’ (3)
such that the matrix A becomes
- cosf) sinf 1
A_T<—sin9 cos@)T ’ (4)

where cosf = a/2, 0 < § < w. The chaotic region was shown to be located on the
boundary of the stable region of the filter. It was proved that for # = 27r where r is
an irrational number, the system exhibits various chaotic behaviors such as ellipse like

fractals in the region p(x) > 1 where

plz) = \/(xl RV Vi

24+a 2—a

It was shown that for certain values of initial conditions the symbolic sequence is periodic,
which corresponds to quasi—periodic trajectory filling densely a finite number of ellipses
or a periodic orbit visiting centers of these ellipses [1, 3]. This is due to the property that
for an irrational r, AKX # I for any integer K. Although it is known that for rational r
the digital filter may exhibit periodic behaviors [2] the relation between the rational r,
the periods of the trajectories and their traveling patterns have not been fully explored.

In this paper, we investigate the relation between the rational r, the period of the

periodic trajectories, and the period of the trajectory traveling pattern. A complete



classification of periodic behaviors is given and mathematical analysis of the underlying
relations is presented. The shape and layout of the regions in the state space corresponding
to a given traveling pattern are examined. Considerable simulation studies are presented

to show the intriguing behaviors.

2 Simulation Results

It was shown in [1] that for irrational r, the chaos starts when the parameter setting
is beyond its stability region. It is similar for rational r as well because the overflow
nonlinearity activates in the same way.

Because of the switching value s, the phase plane is divided into three regions Dy, D,

D_ defined as follows

Dy = {x: =1 < —u; +azxy <1},
D, = {z: —x1 4+ axy > 1},

D = {z: -z +ary < -1},

which correspond to s; taking value 0, +1, —1 respectively. For a given initial conditions
the system (1) can be viewed as a linear system driven by the s sequence. There is a well-
defined map between the phase plane R? and the sequence space ¥ = {s = (sq, s1,*+) :
s, = —1,0,1; kK = 0,1,2,---} [1]. Let us define L(s) as the period of the trajectory
traveling pattern, that is the symbolic sequence, s. For example, if the trajectory moves

in a complex periodic pattern, say
s=(---4+141000—1—100 +141000—1—-100---)

then we say the period of the symbolic sequence is L(5) = 9 and we represent the period—L

symbolic sequence as
s = (+4000——00).

We also denote r = ¢/p where ¢ and p are positive integers satisfying 2¢ < p and
ged(p, q) = 1 (ged stands for greatest common divisor). Note that since cos § = cos(27—6)

and the only parameter considered is a = 2 cos#, it is sufficient to study € € (0, ), that

is 0 < 2q < p.
It can be shown that for arbitrary initial conditions the trajectory of the system (1)
for b = —1 and a € [—2,2] after a finite number of steps enters the region
12: [_171] X [_171]7 (5)
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Figure 1: r = 1/6, z(0) = (0.5, 0.3)",s = (0), L = 1, (a) The trajectory travels on an
ellipse in Dy with period 6, (b) The s sequence of the last 50 iterations.
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Figure 2: r = 1/6, z(0) = (0.9, 0.9)", s = (0), L = 1, (a) The trajectory travels on an
ellipse in Dy with period 6 but p > 1, (b) The s sequence of the last 50 iterations.

and remains in this set. Obviously all periodic orbits must be enclosed within I?. Hence
in our study we limit ourselves to the set I? of initial conditions and consider the system
(1) as a map from I? to I

Numerous simulations were performed (with 500 iterations). Some typical behaviors
are depicted in Figures 1-8. (The dashed lines show the boundaries between Dy, D, and
D_. The dot-dashed line represents the ellipse p(x) = 1).

Figures 1 and 2 depict an interesting periodic behavior within Dy (i.e., sy = 0 for
all k). The trajectory travels on a finite set of points resembling an elliptic shape with
period equal to p. The period of the symbolic sequence is L = 1. It is interesting to note
that Figure 2 shows that the periodic trajectory actually travels in a finite set of states
outside the ellipse p(z) < 1 but still stays in Dy, in contrast to the irrational case where
p(z(0)) > 1 implies that an overflow s, # 0 will occur for some positive k.

Figures 3-8 present much intriguing behaviors where the trajectory travels within

Dy, D, and D_. Figures 3 and 4 illustrate that the trajectory travels in D, and D_



s sequence
=)
[}
o
o
0
o)
o
o
o
o
o}
o
o
o}
o
o
o
o
o
[}
o
o
fo}
o}
€]
(9]
o)
o
o
o
o

-0.5
-1ro o o o o o [o} o o [o}
150
D-
15 . . . . . . . . . 2 . . . . . . . . .
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 450 455 460 465 470 475 480 485 490 495 500
x1 Iterations

Figure 3: r =1/12, 2(0) = (0.9,0.5)", s = (+—000), L = 5, (a) The trajectory travels in
Dy, D, and D_ periodically with period 5 x 12 = 60, (b) The s sequence of the last 50
iterations.
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Figure 4: r = 1/11, 2(0) = (0.8,—-0.4)*, s = (—+), L = 2, (a) The trajectory travels
in D, and D_ periodically with period 2 x 11 = 22, (b) The s sequence of the last 50
iterations.
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Figure 5: r = 1/10, z(0) = (0.9,—0.4)*, s = (+—), L = 2, (a) The trajectory travels in
D, and D_ periodically with period 10, (b) The s sequence of the last 50 iterations.
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Figure 6: r = 7/15, z(0) = (0.5,0.75)", s = (————0++++0), L = 10, (a) The trajectory
travels in Dy, D, and D_ periodically with period 30, (b) The s sequence of the last 50
iterations.
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Figure 7: r = 1/15, 2(0) = (0.85,—0.4)T, s = (—+—+0), L = 5, (a) The trajectory travels
in Dy, Dy and D_ periodically with period 3 x 5 = 15, (b) The s sequence of the last 50
iterations.
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Figure 8: r = 3/7, 2(0) = (—0.4940,0.8901)T, s = (++ 000——000), L = 10, (a) The
trajectory travels in Dy, D, and D_ periodically with period 10, (b) The s sequence of
the last 50 iterations.



periodically with periods 60 and 22 respectively which are the multiple of p and L. Figure
5 shows the trajectory traveling in D, and D_ periodically with period 10 which is the
least common multiple of p and L. This particular behavior can be identified in Figures
6 and 7 where the trajectory travels in Dy, D, and D_ periodically with periods 30 and
15 respectively which are the least common multiples of p and L. Figure 8 describes an
even more interesting case because the period of trajectory is neither a multiple of p nor
a divisor of p.

The question to be asked is, what is the relation between the period of the system
periodic behaviors, the period of their traveling patterns L and the parameter ¢/p? This

question will be addressed in the following sections.

3 Analysis of Periodic Behaviors

In the following we assume that the rotation number of the considered system is rational,

i.e. a = 2cos(2mq/p) and ¢ and p do not have common factors larger than one (ged(q, p) =

1).

Let us define three affine maps:
Fy(z) = Ax + bs, for s = —1,0, +1. (6)

Let us consider a trajectory starting at the initial point z(0) and assume that x(0)
corresponds to the symbolic sequence s = (sg, s1, S2,...). First let us observe that the

kth iteration of the system starting from x(0) can be computed as

k—1

o---0F, oF,)(x(0)) = A*z(0) + Y A*'"Bs;, k>0. (7)
=0

See that for the fixed symbolic sequence Fy, |, o---o0 Fy o Fj is an affine map. We will
show that periodic orbits of the system (1) are closely related to the situation when this
map becomes identity for particular choices of symbolic sequence s = (sg, S1,..., 5k 1).

The equation (7) can be rewritten in the following form:
w(k) = AF2(0) + Wy, - (s0,51,... ,856-1)", (8)
where
U, = (A*'B,... ,A°’B,AB,B). (9)

Now let us assume that x(0) is a periodic point, i.e. there exist n > 0 such that
z(n) = z(0). We say that n is the minimum period if (k) # z(0) forallk =1,2,... ,n—1.

Obviously if x(0) is periodic then the symbolic sequence is also periodic. Its period can

7



in general be smaller than n. The period of the symbolic sequence, L, must be a divisor
of n. In theory, all period—n orbits for given values of parameters can be obtained by

solving the equation

n—1
2(0) = A"z(0) + ) A" "' Bs;
i=0
for all symbolic sequences s = (sg, s1,---,Sr_1), where L is a divisor of n. This method

for finding periodic solutions is very ineffective. In order to find all period—n orbits one
needs to solve 3" linear equations.

In this section we investigate the relation between the period n of the orbit, the period
L of the symbolic sequence and parameters of the system (specifically the parameter p).
We show that given L and p we can fully classify periodic orbits.

This will allow us to analyze the behavior shown in Figures 1-8. Note that in all the
simulations L # p. Furthermore, the discrete states appear to be grouped into clusters
and the number of clusters is the same as the period of the symbolic sequence (apart from
the case presented in Fig. 8). In the following, we will present theorems which can be
used to describe all these behavior types.

The first theorem states that if a point has periodic symbolic sequence with period L

then it is periodic with period n being the least common multiple (Icm) of L and p.

Theorem 1. Let us assume that the symbolic sequence s of the trajectory starting at x(0)
has period L (s = (so,81,--.,51-1)). Let us define n as the least common multiple of p
and L, i.e. n = lem(p, L), and let us extend s periodically so that the sequence s has

length n. Then

n—1
ys=U,s" =) A" !Bs; =0. (10)

i=0
The map Fy, _, o---oFy, oFy, is identity and x(0) is periodic with period n (not necessary
Proof. First let us observe that

K cos(2mqk/p)  sin(2wqk/p) 1
4 _T< —sin(2mwqk/p) cos(2mqk/p) )T ' (11)

It follows that AP = [ and since n is a multiple of p we have A™ = I. The symbolic

sequence s is periodic and then according to (8) we have

z((k +1)n) = A"z (kn) + V,s* = x(kn) +y,, for k> 0. (12)



Hence
z(kn) = x(0) + kys, for all & > 0.

Now suppose ys # [0,0]". Then it is clear that there exists & > 0 such that z(kn) is arbi-
trary far from x(0) and in particular x(kn) ¢ [—1, 1] x [—1, 1], which is a contradiction.

Thus y, = 0. According to (7) F, ,o---oF, oF,, is identity and z(n) = z(0). O

The above theorem tells that if the symbolic sequence is periodic the trajectory also has
to be periodic and the period must be a multiple of L not larger than n = lem(L, p). This
is all we can say in the general case. Further description is possible when we consider two
cases. The first case, which is observed in most experiments (and in all of the examples
shown in Figures 1-8) takes place when L is not a multiple of p. It is studied in the
following section. The second case, when L is a multiple of p happens very infrequently.

It will be studied later.

3.1 L is not a multiple of p

We first derive results for the case when L is not a multiple of p. We will prove the
results on the minimum period of the trajectory in the case. We will show that in this
case the trajectory consists of points lying on L ellipses, which centers are defined by the
symbolic sequence. Before we proceed, we introduce the concept of elliptic sets. Consider

the difference equation
z(k+1) = Az(k),

where z(k) € R* and A is the same as defined in (2) with b = —1 and |a| < 2. One can
easily check that for the energy type function

V(2) = 25 —az1z — bz} = (25 — gzl)Z + (=b— a—)z%, (13)
and for any positive constant ¢ > 0, V(2) = ¢ represents an ellipse for z € R? [5]. In fact,
this is the orbit where the system state travels for s = (0). One can also easily verify
that V(z(k +1)) = V(2(k)) = V(2(0)). If there is a set of states {z(0),---,z(m — 1)}
such that each member z(k) of the set satisfies V(z(k)) = V(2(0)), then we call the set
an elliptic set. It is clear that the points z(k) lie on the ellipse centered at the origin.
The size of the ellipse is defined by z(0). In the following we will also consider elliptic
sets centered at points other than the origin. This concept will be used in the following

sections.



Theorem 2. Let us assume that the symbolic sequence s of the initial point starting at

x(0) has period L, which is not a multiple of p. Let us define the points

zi= (I —A")""N.s', fori=0,...,L—1 (14)
where Wy, is defined in (9) and s is the symbolic sequence obtained by shifting s to the
right i—times, i.e., 8 = (8i, Sit1," "+ ,SL 1,50, " 5 1) -

1. If ©(0) # zy then the trajectory starting at x(0) has the minimum period n =
lem(p, L). Furthermore, the points of the periodic trajectory are grouped into L
elliptic sets of points centered at z; and each of the elliptic sets is composed of n/L

points.
2. If ©(0) = zy then the trajectory starting at x(0) has the minimum period L and
l‘(l) = Zj(mod L)-

Proof. First let us observe that det(I — A*) = 2(1 —cos(2wqL/p)) # 0, since ged(p, q) = 1
and L is not a multiple of p. Let us denote by (29, 21 ... ,2r_1) the unique solution of the

set of equations

zZ1 = AZO+BSO

ZL—-1 = AZL,Q—FBSL,Q (15)
2o = Azp_1+ Bsp_;

Straightforward algebraic manipulations of (15) yield
(I — AL)ZO = \IIL(S(), S1,° ,SL_l)T = \IILSO,
(I— A"z = Wy(sy, -, s-1,8) =¥ps',
(16)

(I—AM2py = Wp(spq,s0,---,802) = Wps"™h
Since det(I — AL) # 0 it follows that the solutions z; are uniquely determined as
2= (I — AY)"".s', fori=0,...,L—1.

Let n be the least common multiple of p and L. Define two integers n, = n/p and
n;, =n/L.
A trajectory starting from z(i + jL) (where ¢ = 0,1,... ,L — 1 and j > 0) has a

periodic symbolic sequence s'. Hence it can be easily derived from (8) that

o(i+ (j +1)L) = Ala(i+ jL) + Vps', fori=0,...,L -1, > 0. (17)

10



Denote y;(j) = z(i + jL) — z; for i = 0,1,... ,L — 1. y;(j) is the coordinate of the

point x(i + jL) after moving the origin to z;. Then we have
yi(j+1) =a(i+ (j+1)L) —z = Az(i+jL) + Urs' — 2 (18)
From (17), we have Us' = z; — ALz, then (18) becomes
yi(j +1) = Alw(i+jL) — Abz = AMa(GL) - z) = Alyi(j) (19)
Iterating (19) ny times yields
yi(j +n) = A" y(5) = AMi(5) = AP yi(5) = vi(d), (20)

since A = 1.

Equation (20) demonstrates two facts. First, it indicates that the least common mul-
tiple n of p and L is the period of the trajectory. Indeed x(n) = z(nyL) = yo(ny) + 2o =
Y0(0) + 2o = (0) which proves that n is the period. Second, if z(0) is not equal to 2
then equation (20) means that the successive (every L steps) states are on an elliptic set

in the x1-x9 phase plane centered at z;. The trajectory is then divided into L elliptic sets
{z(i+jL) =z +yi(j) = 20+ Ay(0) : j = 0,... ,ny — 1}, (21)

From (21) one can easily see that for a fixed i the points z(i + jL) are located on the
ellipse centered at z;. Thus we have proved that the points of periodic trajectory are
grouped into L elliptic sets centered at z; (1 =0,1,...,L — 1). Each elliptic set consists
of n;, = n/L points.

If (0) = 2y then y;(j) =0foralli =0,1,...,L—1and j > 0. In consequence z(i) = z;
fort =0,1,...,L—1 and after L steps the trajectory returns to the initial condition. This

case can be considered as the ith elliptic set compressed into its corresponding center. [

Theorem 2 can in fact explain all the behaviors in Figures 1-8. Figures 1 and 2
correspond to a single center (because of L = 1) with trajectories traveling on an elliptic
set surrounding the center. Figures 3 and 4 are typical behaviors where 5 and 2 elliptic
sets are found respectively. Figures 5-7 are another examples. The trajectories travel
periodically on L elliptic sets, each of which contains the number of states equal to
lem(p, L)/ L. Figure 8 presents a degenerate case, which is the subject of the second part

of the Theorem 2, where each elliptic set is shrunk to its center.

3.2 L is a multiple of p

Another case that needs to be explored is the case when L is a multiple of p. As demon-

strated in the proof of Theorem 2 in this case det(I — A¥) = 2(1 — cos(2mqL/p)) = 0. Tt

11



is not possible to find a unique solution of the equation (15). In consequence there is no

corresponding elliptic sets. This situation is analyzed in the following theorem.

Theorem 3. Let us assume that the symbolic sequence s of the trajectory starting at x(0)

has period L, which is a multiple of p. Then L is the minimum period of x(0).

Proof. Since L is a multiple of p it is clear that L = lem(p,L). From Theorem 1 it
follows that L is the period of x(0). It must be the minimum period since period of the
point in the state space cannot be smaller than the period of the corresponding symbolic

sequence. ]

Although Theorem 3 states that if there exists a period—L symbolic sequence s where
L is a multiple of p, then z(L) = z(0), it does not guarantee that such a symbolic sequence
does exist. We now look at some constraints that limit the existence of admissible symbolic
sequences. Let n = lem(p, L) and n = pn,, where n, is a positive integer. Since A? = I,

then we have

n—1 n—1
z(n) = A"z(0) + Z A" Bs; = 2(0) + Z A1 Bs; (22)
i=0 1=0

From Theorem 1 it follows that z(n) = z(0) and

n—1
Ys = ZAniiilBsi - 077 (23)
i=0
which can be recast as
n—1 np—1 p—1 p—1 np—1
ZAniiilBSi = Z ZApijilBSJpHp = ZApilijB Z Sjtip = 0. (24)
i=0 i=0 j=0 j=0 i=0
Denote §; = 317, " 5;44p, then (24) becomes
[Ap_lBaAp_2Ba"' 7B](§07§17"' 7‘§p*1)T =0 (25)

We can further explore the characteristic of (25). Because of (3) and (4), we have

ko coskf  sinkf I —sin(k — 1)6 sin k0
A _T< —sink0 coskg )T S0 —sinkf  sin(k+1)0

where 6 = 27 /p. Hence since sinf # 0, then (25) is equivalent to

sin(p— 1) sin(p—2)0 --- sin20 sinf 0 .
<0 sin(p—1)0 -+ -+ si20 sng )" O (26)

where § = (S, 51, -+, 8,_1). Note that sin(p—i)f = sin((p—i)(27/p)) = sin(2r—27i/p) =
—sinif. If p is odd, then (26) becomes
<—sin0 — sin 260 —sinp—;lﬁ sinp—;lﬂ sinff 0 >§T:0

0 —sinf —sin 26 —sin22'9 sin2lp ... sind
2 2

12



which leads to

(p—1)/2 (p—1)/2
D (Bic1— Sp1i)sini® =0, > (8 — 8, sinif =0 (27)
i=1 1=1

If p is even, then (26) becomes

—sinf .- —sin’%29 0 sinp—;QG sinf 0 T
. . -9 . -9 . s =0
0 —sinf —8111”79 0 smpTG .-+ sinf
which leads to
D (Si1 = Spo1i)sini® =0, Y (8 — 8,_)sinif =0 (28)
i=1 i=1

The equations (27) and (28) can be used to investigate the existence of admissible
symbolic sequences. Any admissible symbolic sequence has to satisfy either (27) or (28).
Generally, it is difficult to solve (27) and (28) to find admissible symbolic sequences.
Furthermore, it appears to be few symbolic sequences which satisfy (27) or (28). In
the following subsection, the problem of admissible sequences will be examined using a

different approach.

3.3 Admissible sequences

In this section we investigate the problem of shape and layout of the sets in the state
space corresponding to a given symbolic sequence. Let us assume that we have a period—
L symbolic sequence s = (sg, S1,...,5,-1). We would like to find the set of points in
the state space, which produces this symbolic sequence. We call a symbolic sequence
admissible if there exists a point in the state space which realizes this sequence.

Let us denote by G the inverse of Fy(z) = Ax + bs, for s = —1,0,4+1. For b # 0 the
maps G are well defined and can be computed as G,(x) = A~!(z — bs). First we present
a theorem which allows to effectively find the set in the state space corresponding to a

given periodic symbolic sequence.

Theorem 4. Let s = (sg,S1,...,5;1) be the periodic symbolic sequence. Let n =
lem(L,p). The symbolic sequence s is admissible if and only if the following two con-

ditions are satisfied

n—1
ys =W,s" =Y A" !Bs; =0. (29)
=0
n—1
We=T]Guo G0 Gunall?) £, (30)
=0

If s is admissible then the set of points which realize s is Wj.

13



Proof. Let us assume that the periodic symbolic sequence s = (sg, s1,...,5.,_1) is ad-
missible. It means that there exists a point z(0) which realizes this sequence. From the
Theorem 1 it follows that W,,sT = 0, i.e. the condition (29) is satisfied. The fact that z(0)
corresponds to the symbolic sequence s = (s, $1,..., 5, 1) is equivalent to the following

set of conditions:
z(0) € I?, Fy, (2(0)) € I, F,, (F\ (z(0)) € I%,.. ., Fy, (... Fy, (Fs, (2(0))...) € I*. (31)
This in turn is equivalent to

z(0) € I?,2(0) € G4, (I?),2(0) € Gy, 0 Gy, (I?),...,2(0) € Gy, 0 Gy, 0+ 0 Gy, 1(I?).
(32)

In consequence the intersection (30) is not empty as it contains x(0).
Now we prove that if the conditions (29) and (30) hold then the sequence is admissible.
Let us choose a point z(0) belonging to the product (30). It follows that

2(0) € I?, Fy, (2(0)) € I, F,, (Fyy (z(0)) € I%,.. ., Fy, (... Fy, (Fso (2(0))...) € I%. (33)

Hence the first n elements of the symbolic sequence of z(0) are sg, s1,... , S, 1. It follows
from (7) and (29) that

n—1
z(n) = A"z(0) + Z A" Bs; = x(0). (34)
i=0
The point z(0) is periodic and hence it has periodic symbolic sequence s = (sg, S1,- .- , Sp_1)-
In this way we proved that s is admissible. O

From the above theorem it follows that the set of points in the state space correspond-
ing to a particular symbolic sequence is the intersection of n sets. Each of these sets is
a convex quadrangle (the maps Gy, o Gy, o - o G, are affine), hence the intersection
must be either empty or must be a convex polygon with at most 4n edges. I may also
happen that the intersection is a degenerate polygon with empty interior (a segment or
a point), although we have not observed such cases. This theorem provides an efficient
method for finding the set in the state space corresponding to the given symbolic sequence.
First we check the condition (29). If y, # 0 the symbolic sequence is not admissible. In
the opposite case we find the product (30). This whole procedure can be implemented
on a computer. Finding intersection of two convex polygons is a standard problem of
computational geometry, and algorithms to perform this task are widely available [4].

Using the above theorem we have found sets of points in the state space realizing

different symbolic sequences for several values of parameters. We have considered ¢/p =

14



S area
1 [(0) | 4.0000
Total | 4.0000

Table 1: Admissible symbolic sequences for ¢/p = 1/4.

L|s area

1] (0) 3.0000
2 | (+—) | 1.0000
Total | 4.0000

Table 2: Admissible symbolic sequences for ¢/p = 1/6.

1/4,1/5,1/6,3/7,2/9,1/12. As mentioned before one could find all period—n cycles by
considering all period-n symbolic sequences and checking 3" cases. This procedure is
however not very efficient and allows finding only periodic trajectories with a small period.
We have followed a different approach. For each parameter values we have generated
trajectories starting from many initial conditions uniformly distributed in the state space.
For each of the trajectories we have checked whether the symbolic sequence generated
is periodic with period smaller than 200. This procedure gave us a set of admissible
sequences. For each sequence s found using the Theorem 4 we have found the region W,
in the state space corresponding to this symbolic sequence.

The results are collected in Tables 1-6. The first and second column of each table
give the period of the sequence and the sequence itself. The last column gives the area of
the set of initial point corresponding to a given symbolic sequence s and other sequences
obtained by shifting s (for example if s = (0 + +), then the area is the sum of areas of
sets of initial conditions with s = (0 + +), s = (+0+) and s = (+ + 0)). In the last row
we print the sum of the areas for all admissible symbolic sequences found.

These results are also presented in graphic form in Fig. 9, where using different colors
we plot sets in the state space corresponding to admissible sequences found.

Let us discuss the results in more detail. As before the situation depends on whether
L is a multiple of p or not.

If L is not a multiple of p then from Theorem 2 it follows that the periodic trajectory
lies on L ellipses and there are n/L points in each elliptic set. Since L # p it follows
that n/L > 1. So we have at least two points in each elliptic set. Since W; is convex one
can prove that the centers of ellipses also belong to this set. In consequence the polygon
W, contains an ellipse, and in fact each polygon side is tangent to the ellipse which it
contains. This is one of the differences between the case of rational rotation number and
irrational one. In this last case sets corresponding to admissible periodic sequences are

always ellipses.
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area

L

1 (0) 3.0899

2 (—+) 0.3443

3 (00 ) 0.1155

3 (=0 ) 0.1155

12 | (00 + — 4+ —+ —+00+) 0.0257

12 | (—+—-00—00—+—+) 0.0257

18 | (00+ —+ —00 — 00 — + — +00+) 0.1725

78 | (00+—+—-00—00—+—+00400+ —+—00— 00—+ —+00+00+ | 0.0094
—+—4+—+00+00+—+—+—+00+004+—+—-00—00—+—+00+)

78 | (0+00+—+—-00—00—+—400+004+—+—-00—00—+—+—+— | 0.0094
00—00—+—+—+—-00—00—+—+004+00+—+—-00—00—+—+0)

102 | (00+—-+4+-00—-00—+—+ —+4+—00—-00—+ — + —+ — 00 — | 0.0544
00—+ — 400400+ —+ —00—00 — + — 400+ 00 + — + — + — +
00+00+—+—+—+00+00+ — + —00 — 00 — + — +00+)

Total 3.9624
Table 3: Admissible symbolic sequences for p/q = 1/5.

L area,

1 (0) 1.3863

L | (+) 0.3285

1| () 0.3285

4 | (00— -) 0.1937

4 | (++00) 0.1937

6 | (++0—-0) 0.6809

6 | (+ -+ 0000) 0.0238

6 | (0000 — —) 0.0238

10 | (++ 000 — —000) 0.1673

10 (++++0———-0) 0.1675

22 | (+ + 000 — —0000 — —0000 — —000) 0.0010

22 | (+ + 0000 + 4000 — —000 + -+0000) 0.0010

22 | (+ 4000 — —00 — —00 — —00 — —000) 0.0128

22 | (++ 000 — —000 + +00 + 400 + +00) 0.0128

2| (++0—-—0++0————-0+++4+0——0) 0.0301

22| (++0——-0++40——-0+++4+0————-0) 0.0301

34 | (+ + 0000 + 4000 — —00 — —00 — —00 — —000 + +0000) 0.0345

34 | (+ 4 000 — —0000 — —0000 — —000 + +00 + +00 + +00) 0.0345

80 | (+ + 0000 + +000 — —00 — —00 — —00 — —000 + +0000 + +-0000 + | 0.0160
+000 — —00 — —00 — —00 — —000 + 40000 + 40000 + +0000)

80 | (+4000——0000——0000 — —0000 — —0000 — —000 + +00 ++00+ | 0.0160
+00 + +000 — —0000 — —0000 — —000 + +00 + 400 + +00)

86 | (++000——000++00+-+0044-00++000——0000——0000——000+ | 0.0040
+00 + +00 + +00 + +000 — —000 4+ +000 — —000 + +000 — —000)

86 | (++0000+-+000——00——00——00——000++000——000+-+000— | 0.0040
—000 + +000 — —000 + 4000 — —00 — —00 — —00 — —000 + +0000)

Total 3.6907

Table 4: Admissible symbolic sequences for p/q = 3/7.
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h

area

1 (0) 3.1257
2 | (—+) 0.1368
3 (00+) 0.1105
3| (—00) 0.1105
7| (0000 — 00) 0.0218
7 | (000000+) 0.0218
10 | (0000 — 0000+ ) 0.1287
24 | (0000 — 000000 — 000000 — 0000+-) 0.0036
24 | (0000 — 0000 + 000000 + 000000+ ) 0.0036
38 | (00 +— 4+ —00 — 0000 + 0000 — 00 — + — +00 + 0000 — 0000+) | 0.0107
52 | (0000 —00—+—~+00+0000—000000+—+—00—0000+000000+ | 0.0485
000000+)
52 | (00 + — + —00 — 0000 + 0000 — 00 — + — 400 + 0000 — 000000 — | 0.0485
000000 — 0000+)
66 | (0000 — 00 — -+ — 400 + 0000 — 000000 — 000000 — 0000 4 00 + — + | 0.0190
—00 — 0000 + 000000 -+ 000000+)
74 | (0000 — 0000 + 0000 — 0000 -+ 0000 — 0000 + 0000 — 0000 + 0000 — | 0.0010
0000 + 0000 — 0000 + 000000 4 000000+)
74 | (040000 — 0000 4 00 + — 4+ — + — + — 4+ — + — + — 4 00+ 0000 — | 0.0010
000000 — 000000 — 0000 4+ 00 + — + — 4+ — + — 4+ — + — + — + 0)
74 | (000000 + 0000 — 00 — 4 — + — + — + — + — + — + — 00 — 0000 + | 0.0010
0000 — 00 — 4 — + — + — + — + — + — -+ — 00 — 0000 + 000000+)
74 | (040000 — 000000 — 000000 — 0000 + 0000 — 0000 + 0000 — 0000 4 | 0.0010
0000 — 0000 + 0000 — 0000 4 0000 — 000)
98 | (0000—0000+0000—0000+000000000000+0000—0000+0000— | 0.0052
000040000 — 00000000 — 000000 — 000000 — 0000 +0000 — 0000+)
102 | (000000 + 000000 + 000000 + 000000 + 000000 4 0000 — 00 — + — | 0.0005
+ — + — 400 + 0000 — 000000 — 000000 — 0000 + 00 + — + — + — +
—00 — 0000 + 000000+ )
102 | (00 + — 4+ — + — + —00 — 0000 + 000000 + 000000 + 0000 — 00 — | 0.0005
+ — 4+ — + — 400 + 0000 — 000000 — 000000 — 000000 — 000000 —
000000 — 000000 — 0000+)
102 | (004 — + — +— 4 —00 — 0000000000 + 000000 4000000+ 000000+ | 0.0287
0000 — 00 — + — + — + — 00 -+ 0000 — 000000 — 000000 — 000000 —
000000 — 0000+)
Total 3.8286

Table 5: Admissible symbolic sequences for ¢/p = 2/9.
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&~

area

1 ](0) 1.6073

2 | (=) 0.6926

3 | (=0+) 0.3640

3 [ (=+0) 0.3640

4 | (=00+) 0.1821

4 | (—+00) 0.1821

5 | (—=000+) 0.0414

5 | (= +000) 0.0414

5 | (=04 —+) 0.0414

5 | (—+—-+0) 0.0414

52| (=0004+—-00+-0+-0+—+—-+—+—-+0—+—-+0—+—+—0.0122
+—+ -0+ -0+ —00 + —000+)

52| (=0+—+—+—+—+0—4+0—+00 — +000 — +000 — +00 — +0 — | 0.0122
H0—+—+—+—-+-0+—+)

72 | (=000 + —000+ —000+—00+ -0+ —0+—+—0+ —+—0-+—0+ | 0.0078
—00 + —000 + —000 + —000 4 —000 + —000 + —000+)

72 | (= +00 — 4000 — +000 — +000 — +000 — +000 — 4000 — 4000 — | 0.0078
+000 — +000 — +00 — +0 — +0 — + — +0 — + — +0 — +0)

74| (=000+-00+-0+—-0+—+—+—+—+0—+0—+00—+000 — | 0.1318
+000—4+00—-+0—-+0—+—+—4+—+ -0+ -0+ —00+ —000+)

77| (=4+—=4+0—-40—+00—+000—+000—~400—4+0—+0—+—+—+— | 0.0032
+—0+—+-0+—+-0+—+-0+—+-0+—+—0+—+—-0+—+—+)

7| (—+—+0—+—+0—+—+0—+—+0—+—+—+—+—0+—-0+-00+ | 0.0032
—000+-000+—-00+—-0+—-0+—+—+—+—+0—+—+0—+—+0)

84 | (=000+—-0004—000+—00+—0+—0+4—~+—0+—+—04+—0+—-00+ | 0.0247
—000+-000+-00+—0+—0+—~+—0+—+-0+—0-+-00+-000+)

84 | (—+—4+0—+0—+00—-+000—-+000—-+000—-+000—-+00—+0—+0— | 0.0247
+—-4+0—+—+0—4+0—+00—4000—+000—+00—+0—4+0—+—+0)
Total 3.7853

Table 6: Admissible symbolic sequences for ¢/p = 1/12.
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Figure 9: Admissible sequences for (a) ¢/p = 1/4, (b) ¢/p = 1/5, (¢) ¢/p = 1/6, (d)
q/p=3/7, (e) ¢/p=2/9, (f) ¢/p =1/12
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If L is a multiple of p there is no corresponding ellipse, but still each set is a convex
polygon. Two examples are shown in Fig. 10(a,b). We were not able to find this degenerate
case for p < 12. For ¢/p = 1/12 (and also for ¢/p = 5/12) such sequences exist. The
period of the sequence is L = 72 or L = 84 (see also Table 6). For this type of solutions
there is no corresponding ellipse. Since L is a multiple of p we cannot solve the periodic
point equation uniquely to find the ellipse center. The two solutions we have found have
very interesting structure. It seems that they are based on two periodic sequences with a
smaller period (in this particular case with L = 5, s; = (—000+) and s, = (0 + — + —),
plotted in Fig. 10(c)). It looks like the orbit spends long time around one of the orbits with
low period (several polygons touch the ellipse-like structure) but after certain number of
steps it separates from the short orbit (the trajectory goes into a linear region different
from the one where the whole ellipse goes), after a short time the trajectory starts to
follow the second low period orbit and the procedure repeats.

On basis of the the results and discussion presented above one can make the following

observations:

1. The set of points corresponding to a given periodic symbolic sequence is a convex
polygon. It contains the ellipse (apart from the case when L is a multiple of p).
Usually for large L it approximates the ellipse quite well, although it always has to
be a polygon with at most n =4 - lem(p, L) sides.

2. Sometimes (¢/p = 1/4, 1/6, and also 1/3) it is possible to find all admissible se-
quences. In these cases the corresponding sets of initial conditions cover the set
[—1,1] x [-1,1]. For 1/4 all trajectories has symbolic sequence s = (0), and for 1/6
a trajectory has a symbolic sequence s = (0) or s = (—+), and there are no other

admissible symbolic sequences.

3. For other cases it seems that one could find periodic sequences with arbitrarily large
period. In such a case full classification of behavior in terms of symbolic sequences

would not be possible.

4. Sets corresponding to low—period periodic sequences are large. In all cases consid-
ered symbolic sequences with period L < 200 allows to classify a significant part of
the state space (the corresponding sets occupy more than 3.6/4 of the area of the
state space[—1,1] x [—1,1] ). Usually sequences with longer period correspond to

sets with smaller area, but there are some exceptions (see for example L = 12,18
for ¢/p = 1/5).

5. Periodic admissible symbolic sequences found are rather sparse. The number of
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Figure 10: Degenerate admissible sequences for ¢/p = 1/12 (a) period-72 sequence, (b)
period-84 sequence, (c) short sequences (—000+) and (04 — + —) serving as a “base” for
the degenerate sequences.
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admissible periodic sequences with the length L < 100 is of order of 20 or smaller,
which is a very small number when compared to the total number of symbolic
sequences with these periods. This is related to the fact that the admissible periodic

symbolic sequences must satisfy equation (29).

6. There exist periodic sequences with L being a multiple of p. This kind of periodic
orbits, with no corresponding elliptic sets is specific to rational r. For irrational r

all periodic orbits are associated with ellipse centers.

4 Discussion and Conclusion

In this paper, the periodic behaviors of the digital filter with two’s complement arithmetic
for rational r have been studied. The relation between the period of periodic trajecto-
ries and their traveling patterns (symbolic sequences) has been fully explored. To our
knowledge, it is the first time such relation in the digital filter with two’s complement
arithmetic is fully explored for rational rs. However there are still several open questions

that remain to be solved.
1. Are there any points with non—periodic symbolic sequences.

2. For p/q =1/3,1/4,1/6 we have found all admissible symbolic sequences. Are there

any other parameter values for which there are finitely many admissible sequences?

3. Are there any symbolic sequences with L = p? This seems to be the simplest
degenerate case. We were however not able to find such an example or to prove that
it is not possible, although from Equations (27) and (28) it could be shown that

indeed in most cases it is not possible.

Solutions to these intriguing problems would certainly further improve the understanding

of the periodic behaviors of the digital filter with two’s complement arithmetic.
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