Return Map Approach for Simulations of Electronic Circuits with Memristors

Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology

September 11th, 2018, ICSES, Kraków

Return Map Approach for Simulations of Memristors

イロン スポン イヨン イヨン

- Memristors.
- Memristor models:
 - Strukov model.
 - Joglekar window.
 - Biolek window.
 - VTeam model.
- Simulations of electronic circuits with memristors:
 - discontinuities in memristor models,
 - return map approach for simulations of memristors.
- Simulation example:
 - a sinusoidally driven memristor described using the VTEAM model,
 - a comparison with standard numerical integration methods.
- Conclusions.

- A classical memristor is a circuit element characterized by a nonlinear relation between charge and flux. Its resistance depends on the history of current flowing through the element or the voltage across the element.
- Memristors were theoretically introduced in 1971.
- Memristive behavior was recognized in a nano-scale double-layer ${\rm TiO}_2$ film in 2008.
- Memristors have received significant attention due to a number of possible applications including large-capacity nonvolatile memories and neuromorphic systems.

• A current-controlled memristor:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x, i),$$

$$v(t) = R(x, i)i(t),$$

where x is the internal variable of the memristor, R(x, i) is called the memristance, v(t) is the voltage across the device, and i(t) is the current passing through the device.

• A voltage-controlled memristor:

$$\begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t} &= h(x, v), \\ i(t) &= G(x, v)v(t), \end{aligned}$$

where G(x, v) is called the memductance.

伺下 イヨト イヨト

- In several models, the internal state of a memristor is limited by physical dimensions of the device.
- Limitation of variables introduce discontinuities in right hand sides (RHS) of differential equations describing dynamics of circuits with memristors.
- These discontinuities make it difficult to integrate such systems using standard numerical integration methods.
- An approach based on the concept of a return map is proposed to solve this problem.
- A simple example is discussed to show the usefulness of the proposed technique.

The linear ion drift model (Strukov model)

- Physical model: two-layer thin film (width D pprox 10 nm),
- One layer (of width w ∈ [0, D]) is doped with oxygen vacancies (behaves as a semiconductor).
- The second layer (of width D w) behaves as an insulator.
- The internal variable $x = w/D \in [0, 1]$.
- The linear ion drift model

$$egin{aligned} &rac{\mathrm{d}x}{\mathrm{d}t} = ki(t)f(x), \ &v(t) = R(x)i(t), \quad R(x) = R_{\mathrm{on}}x + R_{\mathrm{off}}(1-x). \end{aligned}$$

• The ideal rectangular window function

$$f(x) = \begin{cases} 1, x \in [0, 1], \\ 0, \text{ otherwise.} \end{cases}$$

• Modeling problem: the RHS of the equation defining dw/dt is discontinuous, standard integration methods may work improperly for ODEs with discontinuous right hand sides.

Joglekar window

- The idea: decrease the rate of change of x close to the window bounds and make the window function continuous.
- The Joglekar window function:

 $f(x) = 1 - (2x - 1)^{2p}$ for $x \in [0, 1]$, f(x) = 0, for $x \notin [0, 1]$:

- The Joglekar window function is continuous.
- Modeling problem: when w reaches a boundary, the right hand side of the equation defining dw/dt is zero and the internal variable may remain constant for ever.

(4月) (4日) (4日)

• The Biolek window function:

$$f(x,i) = \begin{cases} 1 - (x - \operatorname{stp}(-i))^{2p}, & w > 0, i < 0 \text{ or } w < 1, i > 0, \\ 0, & \text{otherwise.} \end{cases}$$

where stp(i) = 0 for i < 0 and stp(i) = 1 for $i \ge 0$.

An artificial construction to avoid modeling problems at boundaries.

- 4 同 6 4 日 6 4 日 6

Э

VTEAM model

• The VTEAM model introduces threshold voltages v_{on} and v_{off}

$$rac{\mathrm{d} w}{\mathrm{d} t} = \left\{egin{array}{l} k_{\mathrm{off}} \left(v / v_{\mathrm{off}} - 1
ight)^{lpha_{\mathrm{off}}} f_{\mathrm{off}}(w), \, 0 < v_{\mathrm{off}} < v, \ 0, \quad v_{\mathrm{on}} \leq v \leq v_{\mathrm{off}}, \ k_{\mathrm{on}} \left(v / v_{\mathrm{on}} - 1
ight)^{lpha_{\mathrm{on}}} f_{\mathrm{on}}(w), \, \, v < v_{\mathrm{on}} < 0, \end{array}
ight.$$

- The resistance remains constant for $v_{\rm on} \leq v \leq v_{\rm off}.$
- f_{off}(w), and f_{on}(w) are window functions which constrain the internal variable w to bounds [w_{on}, w_{off}].
- The ideal rectangular window function:

$$f_{\mathrm{off}}(w) = f_{\mathrm{on}}(w) = \begin{cases} 1, w \in [w_{\mathrm{on}}, w_{\mathrm{off}}], \\ 0, \text{ otherwise.} \end{cases}$$

• A linear dependence between R(w) and w:

$$i(t) = \left(R_{\rm on} + \frac{w - w_{\rm on}}{w_{\rm off} - w_{\rm on}}(R_{\rm off} - R_{\rm on})\right)^{-1} u(t).$$

Z. Galias Return

Return Map Approach for Simulations of Memristors

Return map approach

- The state space Rⁿ is divided into m smooth regions
 R₁, R₂,..., R_m with boundaries B₁, B₂,..., B_m. For the region R_k, we define the return map P_k with the return condition defined using the boundary B_k.
- For x ∈ ℝⁿ the image P_k(x) under the return map P_k is defined as the first intersection of the trajectory starting at x with B_k.
- The return map approach,
 - a standard numerical integration method is used to compute the trajectory as long as it remains in \mathcal{R}_k ,
 - during the evaluation of P_k the return condition defined by \mathcal{B}_k is monitored,
 - after entering another smooth region computations are continued for the corresponding return map.
- The main advantage: we never numerically integrate a discontinuous or a non-smooth system.

・ロン ・回 と ・ 回 と ・ 回 と

Return map approach example: the VTEAM model

- Five smooth regions separated by conditions: $w = w_{\text{off}}$, $w = w_{\text{on}}$, $v = v_{\text{off}}$, and $v = v_{\text{on}}$:
 - Region \mathcal{R}_1 : $v > v_{\text{off}}$, $w < w_{\text{off}}$; the variable w grows according to $\dot{w} = k_{\text{off}} (v/v_{\text{off}} 1)^{\alpha_{\text{off}}}$; the return map condition: $(v v_{\text{off}})(w w_{\text{off}}) = 0$; if $v = v_{\text{off}}$ go to region \mathcal{R}_3 , if $w = w_{\text{off}}$ go to region \mathcal{R}_4 .
 - Region \mathcal{R}_2 : $v < v_{on}$, $w > w_{on}$, the variable w decreases according to $\dot{w} = k_{on} (v/v_{on} 1)^{\alpha_{on}}$, the return map condition: $(v v_{on})(w w_{on}) = 0$; if $v = v_{on}$ go to region \mathcal{R}_3 , if $w = w_{on}$ go to region \mathcal{R}_5 .
 - Region \mathcal{R}_3 : $v \in (v_{\text{on}}, v_{\text{off}})$, $w \in (w_{\text{on}}, w_{\text{off}})$; $\dot{w} = 0$; the return map condition: $(v v_{\text{off}})(v v_{\text{on}}) = 0$; if $v = v_{\text{off}}$ go to region \mathcal{R}_1 , if $v = v_{\text{on}}$ go to region \mathcal{R}_2 ,
 - Region \mathcal{R}_4 : $v > v_{on}$, $w = w_{off}$; $\dot{w} = 0$; the return map condition $v v_{on} = 0$; if $v = v_{on}$ go to Region \mathcal{R}_2 .
 - Region \mathcal{R}_5 : $v < v_{\text{off}}$, $w = w_{\text{on}}$; $\dot{w} = 0$, the return map condition: $v v_{\text{off}} = 0$; if $v = v_{\text{off}}$ go to Region \mathcal{R}_1 .

Simulation example: sinusoidally driven memristor

- VTEAM model: $\alpha_{\text{off}} = \alpha_{\text{on}} = 3$, $v_{\text{off}} = 0.15 \text{ V}$, $v_{\text{on}} = -0.20 \text{ V}$, $R_{\text{off}} = 1000 \Omega$, $R_{\text{on}} = 100 \Omega$, $w_{\text{on}} = 0$, $w_{\text{off}} = 10 \text{ nm}$, $k_{\text{off}} = 4 \cdot 10^{-6} \text{ m/s}$, $k_{\text{on}} = -8 \cdot 10^{-6} \text{ m/s}$.
- The input voltage: $v(t) = V_m \sin(\omega t)$, where $V_m = 0.4$ V, $\omega = 2\pi/T$, T = 0.01 s.
- Explicit solutions in each smooth region:
 - Region \mathcal{R}_1 : $v > v_{\text{off}}$ and $w < w_{\text{off}}$;

$$w(t) = w(t_0) + \int_{t_0}^t k_{\mathrm{off}} \left(rac{v(t)}{v_{\mathrm{off}}} - 1
ight)^{lpha_{\mathrm{off}}} \mathrm{d}t.$$

• Region \mathcal{R}_2 : $v < v_{\mathrm{on}}$ and $w > w_{\mathrm{on}}$;

$$w(t) = w(t_0) + \int_{t_0}^t k_{\mathrm{on}} \left(rac{v(t)}{v_{\mathrm{on}}} - 1
ight)^{lpha_{\mathrm{on}}} \mathrm{d}t.$$

• Other regions: w(t) = const.

• For $\alpha_{off} = \alpha_{on} = 3$ solutions in regions 1 and 2 can be found using an explicit formula for the indefinite integral.

Simulation example: return map approach

Z. Galias

Return Map Approach for Simulations of Memristors

Simulation example: return map approach

- In general, analytical solutions are not available.
- Example: solution obtained using the first order Euler method with the fixed time step $\tau = 10^{-4}$.

 The results are very close to the ones obtained using the explicit formulas.

Simulation example: standard numerical methods

- The ode45 procedure from the MATLAB package
 - (a) with the RHS being zero outside the interval $[w_{on}, w_{off}]$: the trajectory reaches the region $w > w_{off}$ (numerical errors) and stays there for ever,
 - (b) with the RHS forcing solutions to converge to $[w_{on}, w_{off}]$: high frequency oscillations at the boundary w_{off} .

Z. Galias

- 4 同 2 4 日 2 4 日 2

- A return map based approach for simulations of circuits containing memristor elements has been introduced.
- Its usefulness has been shown using a sinusoidally driven memristor described by the VTEAM model.