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Memristors

A classical memristor is a circuit element characterized by a
nonlinear relation between charge and flux. Its resistance
depends on the history of current flowing through the element
or the voltage across the element.

Memristors were theoretically introduced in 1971.

Memristive behavior was recognized in a nano-scale
double-layer TiO2 film in 2008.

Memristors have received significant attention due to a
number of possible applications including large-capacity
nonvolatile memories and neuromorphic systems.

It has been confirmed that memristors are useful for designing
nonlinear oscillators.

One of the simplest memristor circuits displaying complex
behaviors is the parallel inductor-capacitor-memristor circuit.
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Current controlled memristor

For the ideal charge-controlled memristor there exist a
constitutive relation between the charge q and the magnetic
flux ϕ in the form ϕ = fM(q). The relation between the
voltage and the current is

u = R(q)i , R(q) =
dfM(q)

dq

The memristance R(q) is a function of the charge q.

The memristor can be considered as the fourth basic passive
circuit element.

A generalized voltage controlled memristor:

i = G (z , u)u,
dz

dt
= f (z , u),

where z ∈ Rn is the vector of internal state variables and
G (z , u) is called the memductance.
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The parallel inductor-capacitor-memristor circuit

The parallel inductor-capacitor-memristor circuit: two linear
elements (C and L, the inductor series resistance is
represented as r0) and a nonlinear active voltage controlled
memristor defined by

iM = αuMz , ż = −β + u2M .

Circuit equations:

Lẋ = y − r0x ,

Cẏ = −x − αyz
ż = −β + y2,

where x = iL and y = uC .
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Parameter values: L = 0.025, C = 0.025, α = 0.825, β = 10,
r0 is a bifurcation parameter.
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Example trajectory of the circuit

Parameter values: L = 0.025, C = 0.025, α = 0.825, β = 10,
r0 = 1.
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When β > 0, α 6= 0, r0 6= 0 the dynamical system has two
equilibrium points (x , y , z) = (±

√
βr−1

0 ,±
√
β,−α−1r−1

0 ) ≈
(±3.1623,±3.1623,−1.2121).
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Return map

Equilibria (x , y , z) = (±
√
βr−1

0 ,±
√
β,−α−1r−1

0 ),√
β =
√

10 ≈ 3.16227766.

To reduce the continuous problem to the discrete one we use
the method of the return map (Poincaré map).

Σ = Σ1 ∪ Σ2 — union of half-planes,
Σ1 = {w = (x , y , z) : y = +3.16227766, ẏ < 0},
Σ2 = {w = (x , y , z) : y = −3.16227766, ẏ > 0}.
The return map P : Σ 7→ Σ

P(x) = ϕ(τ(x), x),

ϕ(t, x) is the trajectory with the initial point x , and τ(x) > 0
is the time needed for the trajectory to reach Σ.
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Bifurcation diagram for the return map P

2001 equidistant values in the interval r0 ∈ [0.5, 1.5],

500 iterations skipped, 5000 iterations plotted,

initial point (x , y , z) = (−0.1,−0.1, 0.1) for r0 = 0.5,

continuation method: endpoint of the trajectory is used as an
initial point for the next parameter value,

results obtained for r0 ∈ [0.86, 1.22]:
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Finding multiple attractors

For nonlinear systems there may exist multiple attractors.

Finding multiple attractors

For fixed parameter values we find steady states for 1001× 501
initial points filling uniformly the rectangle
(x0, y0, z0) ∈ [−10, 10]× [3.16227766]× [−5, 5] ⊂ Σ1.
In each case a new attractor is found, we verify whether it
belongs to an existing bifurcation plot.
If not, a new bifurcation plot containing this attractor is
constructed using the continuation method.

Computations are carried out for 151 equidistant parameter
values in the range r0 ∈ [0.5, 2.0].

Ten disconnected bifurcation plots have been found.
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A complete bifurcation diagram r0 ∈ [0.5, 2.0]

Ten disconnected bifurcation plots have been found.

Some regions are very narrow — very fine sampling of the
parameter space is necessary to find attractors.
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Regions of coexisting attractors
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The number of attractors found versus r0

The total number of attractors and the number of chaotic
attractors found versus r0.
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The maximum number of six (periodic) attractors is observed
for r0 = 1.23.

Four chaotic attractors are observed for r0 = 1.0307.

Five chaotic attractors are observed for r0 = 1.030689.
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Chaotic attractors existing for r0 = 1.0307

Four attractors are observed for r0 = 1.0307.

One of the attractors (red) occupies a large part of the state
space,

Three attractors are located very close to each other (blue,
green and magenta).
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Attractors, variable ranges: y ∈ [−10, 10], z ∈ [−15, 15]

r0=0.50 r0=0.58 r0=0.59

r0=0.6 r0=0.60015 r0=0.77

r0=0.79 r0=0.793 r0=0.81

r0=0.85 r0=0.92 r0=0.96
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Attractors, y ∈ [−10, 10], z ∈ [−15, 15], cont.

r0=0.99 r0=1.00 r0=1.03

r0=1.0307 r0=1.11 r0=1.15

r0=1.16 r0=1.18 r0=1.19

r0=1.2 r0=1.23 r0=1.26
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Attractors, y ∈ [−10, 10], z ∈ [−15, 15], cont.

r0=1.3 r0=1.36 r0=1.44

r0=1.5 r0=1.54 r0=1.56

r0=1.6 r0=1.7 r0=2
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Basins of attraction

For a given attractor A its basin of attraction B(A) is defined
as a set of initial points such that if a trajectory is started in
B(A) then it converges to A.

Search of basins of attraction for the plane
Σ3 = {w = (x , y , z) : y = 3.16227766}.
We find steady states for 2001× 1001 initial points filling
uniformly the rectangle
R = (x0, y0, z0) ∈ [−10, 10]× [3.16227766]× [−5, 5] ⊂ Σ3.

Initial points are plotted with colors corresponding to the
steady state obtained.

Attractors are plotted in black: for periodic attractors we use
the × symbol and for chaotic attractors we use dots.
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Basins of attraction (x ∈ [−10, 10], z ∈ [−5, 5])

r0=0.50 r0=0.58 r0=0.59

r0=0.6 r0=0.60015 r0=0.77

r0=0.79 r0=0.793 r0=0.81

r0=0.85 r0=0.92 r0=0.96
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Basins of attraction (x ∈ [−10, 10], z ∈ [−5, 5]), cont.

r0=0.99 r0=1.00 r0=1.03

r0=1.0307 r0=1.11 r0=1.15

r0=1.16 r0=1.18 r0=1.19

r0=1.2 r0=1.23 r0=1.26
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Basins of attraction (x ∈ [−10, 10], z ∈ [−5, 5]), cont.

r0=1.3 r0=1.36 r0=1.44

r0=1.5 r0=1.54 r0=1.56

r0=1.6 r0=1.7 r0=2
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Basins of attraction for r0 = 1.0307 and r0 = 1.030689

variable ranges: x ∈ [2.29, 2.36], z ∈ [−1.57,−1.51].

four chaotic attractors for r0 = 1.0307,

five chaotic attractors for r0 = 1.030689.

r0 = 1.0307 r0 = 1.030689
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Rigorous study

Due to rounding errors results obtained by numerical
simulations of nonlinear systems may be unreliable.

Rounding errors accumulate and are propagated in further
computations.

For more complex problems this may result in totally wrong
answers.

Interval arithmetic based computations may be used to obtain
rigorous results.

The vector field is integrated using the rigorous Taylor
integration method of order 30 with automatic time step
control.
For the evaluation of the return map P and its Jacobian the
CAPD library is used.
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How to prove the existence of an attractor

A general technique: construct a trapping region.

Ω ⊂ Σ such that P(Ω) ⊂ P is called a trapping region.
To prove that P(Ω) ⊂ P cover Ω by interval vectors wk , find
enclosure uk ⊃ P(wk) and verify that uk ⊂ Ω.
Each bounded trapping region contains at least one attractor.
The existence of non-overlapping trapping regions implies the
existence of multiple attractors.

For periodic attractors use the interval Newton method.

The interval Newton operator for the map F :
N(x) = x̂ − F ′(x)−1F (x̂), where x̂ ∈ x and F ′(x) is an interval
matrix containing the Jacobian matrices F ′(x) for x ∈ x.
if N(x) ⊂ x, then x contains exactly one zero of f .
To prove the existence of period-p orbits of P apply the
interval Newton method to the map F = (F0,F1, . . . ,Fp−1)
defined by: Fk(w0,w1, . . . ,wp−1) = w(k+1) mod p − P(wk), for
k = 0, 1, . . . , p − 1.
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The existence of periodic attractors

The existence of all 353 periodic attractors reported in the
figure with the number of attractors is proved.

Example: 6 periodic attractors for r0 = 1.23:

p — the period of the orbit of P,
T — the flow time (the period of the continuous time system),
bounds for (x0, y0, z0).

n p T (x0, y0, z0)

1,2 1 0.3261469354892817 (±1.354188878559675, ±3.16227766,
−1.935338131817655)

3,4 2 0.430478306043 (±1.70047619637067, ±3.16227766,
−1.415828478157453)

5,6 3 1.409248417169 (±1.10501569928279, ±3.16227766,
−2.4621738562709677)
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Two chaotic attractors for r0 = 0.99

(a) the trapping region Ω (red) for the return map P enclosing a
numerically observed trajectory (black), the existence of the
symmetric attractor follows from the symmetry of the vector
field.

(b) sets Q1, Q2, Q3 with complex symbolic dynamics (implies
positive topological entropy, the infinite number of periodic
orbits and the topological chaos).
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Chaotic attractors for r0 = 1.0307

Four chaotic attractors are observed in simulations: one wide
self-symmetric attractor and three tiny attractors (one
self-symmetric and a symmetric pair).

(a) The trapping region Ω0 (light red), its image (black), and
three attractors (blue, green, magenta).

(b) The three trapping regions Ω1, Ω2, Ω3 ∪ Ω4 ∪ Ω5.
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Conclusions

Dynamical phenomena in the parallel
inductor-capacitor-memristor circuit studied numerically.

A systematic search for coexisting attractors carried out.

The existence of multiple attractors has been observed and
bifurcation diagrams have been constructed.

Basins of attraction have been computed.

The coexistence of attractors has been proved using interval
analysis tools.

The existence of periodic attractors is confirmed by applying
the interval Newton method to prove the existence of stable
periodic orbits of an associated return map.
For numerically observed chaotic attractors the existence of
attractors is proved by constructing trapping regions enclosing
chaotic trajectories of the return map.
The existence of topological chaos is proved using the method
of covering relations.
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