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Memristors

@ A classical memristor is a circuit element characterized by a
nonlinear relation between charge and flux. Its resistance
depends on the history of current flowing through the element
or the voltage across the element.

@ Memristors were theoretically introduced in 1971.

@ Memristive behavior was recognized in a nano-scale
double-layer TiO; film in 2008.

@ Memristors have received significant attention due to a
number of possible applications including large-capacity
nonvolatile memories and neuromorphic systems.

@ It has been confirmed that memristors are useful for designing
nonlinear oscillators.

@ One of the simplest memristor circuits displaying complex
behaviors is the parallel inductor-capacitor-memristor circuit.
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Current controlled memristor

@ For the ideal charge-controlled memristor there exist a
constitutive relation between the charge g and the magnetic
flux ¢ in the form ¢ = fyy(q). The relation between the
voltage and the current is

u=R@)i, R(q) = A9

e The memristance R(q) is a function of the charge q.

@ The memristor can be considered as the fourth basic passive
circuit element.

@ A generalized voltage controlled memristor:

, dz
i=G(z,u)u, i f(z,u),

where z € R" is the vector of internal state variables and
G(z,u) is called the memductance.
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The parallel inductor-capacitor-memristor circuit

@ The parallel inductor-capacitor-memristor circuit: two linear
elements (C and L, the inductor series resistance is
represented as rp) and a nonlinear active voltage controlled
memristor defined by

f/\// = aumz, z= —,6 + U%/,.
o Circuit equations: i,
l

Lx =y — rox, L + o+
Cy=—x—ayz Ue — M@ Uy,

. C

zZ = _B +y27 Yo — -

where x = i; and y = uc.

@ Parameter values: L = 0.025, C = 0.025, o = 0.825, 5 = 10,
rp is a bifurcation parameter.
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Example trajectory of the circuit

@ Parameter values: L = 0.025, C = 0.025, a = 0.825, 5 = 10,
n = 1.

@ When 8 > 0, a # 0, rg # 0 the dynamical system has two

equilibrium points (x,y, z) = (£VBry L, £vB, —a 1y ) =
(+3.1623, +3.1623, —1.2121).
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Return map

o Equilibria (x,y,2) = (£vBry 1, £VB, —a"trgh),
VB = V10 ~ 3.16227766.

@ To reduce the continuous problem to the discrete one we use
the method of the return map (Poincaré map).

@ ¥ =37 UXy — union of half-planes,
Y ={w=(x,y,z): y = +3.16227766,y < 0},
Yo ={w=(x,y,z): y = —3.16227766,y > 0}.

@ Thereturn map P: £ — ¥

©(t, x) is the trajectory with the initial point x, and 7(x) > 0
is the time needed for the trajectory to reach .
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Bifurcation diagram for the return map P

2001 equidistant values in the interval ry € [0.5,1.5],

500 iterations skipped, 5000 iterations plotted,

initial point (x, y,z) = (—0.1,—-0.1,0.1) for rp = 0.5,
continuation method: endpoint of the trajectory is used as an
initial point for the next parameter value,

e results obtained for ry € [0.86,1.22]:

To

Z. Galias Coexistence of Attractors in a Memristor Circuit



Finding multiple attractors

@ For nonlinear systems there may exist multiple attractors.
e Finding multiple attractors
o For fixed parameter values we find steady states for 1001 x 501
initial points filling uniformly the rectangle
(Xo,_y(),Zo) S [—].07 10] X [316227766] X [—575] C X;.
e In each case a new attractor is found, we verify whether it
belongs to an existing bifurcation plot.
e If not, a new bifurcation plot containing this attractor is
constructed using the continuation method.
e Computations are carried out for 151 equidistant parameter
values in the range ry € [0.5,2.0].

@ Ten disconnected bifurcation plots have been found.
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A complete bifurcation diagram ry € [0.5,2.0]

@ Ten disconnected bifurcation plots have been found.

@ Some regions are very narrow — very fine sampling of the
parameter space is necessary to find attractors.
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The number of attractors found versus ry

@ The total number of attractors and the number of chaotic
attractors found versus ry.
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@ The maximum number of six (periodic) attractors is observed
for rp = 1.23.

@ Four chaotic attractors are observed for ry = 1.0307.

@ Five chaotic attractors are observed for ry = 1.030689.
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Chaotic attractors existing for ry = 1.0307

@ Four attractors are observed for ry = 1.0307.

@ One of the attractors (red) occupies a large part of the state

space,

@ Three attractors are located very close to each other (blue,

green and magenta).
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Attractors, variable ranges: y € [—10, 10], z € [—15, 15]

~— r0=058 |

; rp=0.60015




Attractors, y € [—10,10], z € [-15, 15], cont.
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Attractors, y € [—10,10], z € [-15, 15], cont.
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Basins of attraction

e For a given attractor A its basin of attraction B(A) is defined
as a set of initial points such that if a trajectory is started in
B(A) then it converges to A.

@ Search of basins of attraction for the plane
Y3={w=(x,y,z): y =3.16227766}.

o We find steady states for 2001 x 1001 initial points filling
uniformly the rectangle
R= (X(),yo,Zo) € [—].07 ].0] X [3.16227766] X [—5,5] C X3.

@ Initial points are plotted with colors corresponding to the
steady state obtained.

@ Attractors are plotted in black: for periodic attractors we use
the x symbol and for chaotic attractors we use dots.
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Basins of attraction (x € [-10,10], z € [-5,
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Basins of attraction (x € [—10,10], z € [-5,

ro=1.0307
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Basins of attraction (x € [-10,10], z € [-5, 5]), cont.
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Basins of attraction for r; = 1.0307 and ry = 1.030689

e variable ranges: x € [2.29,2.36], z € [-1.57, —1.51].
@ four chaotic attractors for ry = 1.0307,
@ five chaotic attractors for ry = 1.030689.

ro = 1.0307 ro = 1.030689
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Rigorous study

@ Due to rounding errors results obtained by numerical
simulations of nonlinear systems may be unreliable.

@ Rounding errors accumulate and are propagated in further
computations.

@ For more complex problems this may result in totally wrong
answers.

@ Interval arithmetic based computations may be used to obtain
rigorous results.

e The vector field is integrated using the rigorous Taylor
integration method of order 30 with automatic time step
control.

e For the evaluation of the return map P and its Jacobian the
CAPD library is used.
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How to prove the existence of an attractor

@ A general technique: construct a trapping region.

e Q C X such that P(Q) C P is called a trapping region.

o To prove that P(2) C P cover Q by interval vectors wy, find
enclosure u, O P(wy) and verify that uy C Q.

Each bounded trapping region contains at least one attractor.
The existence of non-overlapping trapping regions implies the
existence of multiple attractors.

@ For periodic attractors use the interval Newton method.

e The interval Newton operator for the map F:

N(x) = X — F'(x)"1F(X), where £ € x and F’(x) is an interval
matrix containing the Jacobian matrices F’(x) for x € x.

o if N(x) C x, then x contains exactly one zero of f.

e To prove the existence of period-p orbits of P apply the
interval Newton method to the map F = (Fo, F1,. .., Fp—1)
defined by: Fi(wo, w1, ..., Wp_1) = W(k+1) mod p — P(wk), for
k=0,1,...,p—1.
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The existence of periodic attractors

@ The existence of all 353 periodic attractors reported in the
figure with the number of attractors is proved.
@ Example: 6 periodic attractors for rp = 1.23:

e p — the period of the orbit of P,
o T — the flow time (the period of the continuous time system),
e bounds for (xo, ¥o, 20)-

n p T (%0, Y0, Z0)

1,2 1 0.3261469354897% (4:1.3541888785572, +3.16227766,
—1.93533813181%2)

34 2 0.4304783060% (£1.7004761963L9, 4-3.16227766,
—1.41582847815.%)

56 3 1.40924841[% (+£1.105015699282, £3.16227766,

—2.46217385627099)
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Two chaotic attractors for r;p = 0.99

(a) the trapping region Q (red) for the return map P enclosing a
numerically observed trajectory (black), the existence of the

symmetric attractor follows from the symmetry of the vector
field.

(b) sets Q1, @2, Q3 with complex symbolic dynamics (implies
positive topological entropy, the infinite number of periodic
orbits and the topological chaos).
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Chaotic attractors for rp = 1.0307

@ Four chaotic attractors are observed in simulations: one wide
self-symmetric attractor and three tiny attractors (one
self-symmetric and a symmetric pair).

(a) The trapping region Qg (light red), its image (black), and
three attractors (blue, green, magenta).
(b) The three trapping regions Q1, Qp, Q3 U Q4 U Qs.
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Conclusions

@ Dynamical phenomena in the parallel
inductor-capacitor-memristor circuit studied numerically.

@ A systematic search for coexisting attractors carried out.

@ The existence of multiple attractors has been observed and
bifurcation diagrams have been constructed.

@ Basins of attraction have been computed.

@ The coexistence of attractors has been proved using interval
analysis tools.

e The existence of periodic attractors is confirmed by applying
the interval Newton method to prove the existence of stable
periodic orbits of an associated return map.

e For numerically observed chaotic attractors the existence of
attractors is proved by constructing trapping regions enclosing
chaotic trajectories of the return map.

e The existence of topological chaos is proved using the method
of covering relations.
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