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Introduction

• Memristors have received significant attention due to
a number of possible applications including large
capacity non-volatile memories and neuromorphic
systems.

• Design of memristor based neuromorphic systems
requires a thorough understanding of the nonlinear
dynamics of coupled memrsistor based oscillators.

Objectives

• Study of the dynamics and the stability of
synchronized motions in coupled memristor based
oscillators.

Inductor-capacitor-memristor circuit
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• Circuit equations:ẋẏ
ż

 = F

xy
z

 =

 (y − r0x)/L
(−x− αyz)/C
−β + y2

 ,
where x = iL, y = vC, and z is the internal variable of
the memristor.

• Parameters: L = 0.025, C = 0.025, α = 0.825, and
β = 10, r0 = 1 or r0 = 1.18

• A single chaotic attractor for r0 = 1, two chaotic and
two periodic attractors for r0 = 1.18:

r0 = 1 r0 = 1.18
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Ring of coupled oscillators
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• Equations of coupled oscillators

ẇk = F (wk) + GE
n−1∑
j=0

Hkjwj, E =

0 0 0
0 C−1 0
0 0 0

 ,
where wk = (xk, yk, zk)> and H is the coupling
matrix.

• For n = 2 the coupling matrix is

H =
(
−1 1
1 −1

)
.

• For n > 2 the coupling coefficients are

Hkj =


−2 for k = j,

1 for |k − j| ∈ {1, n− 1},
0 otherwise.

Master Stability Function Approach

• The generalized variational equation
ẇ = F (w), ξ̇ = (F ′(w) + γE)ξ.

• Study the generalized variational equation as a
function of γ.

• Identify the region Γ ⊂ R such that for γ ∈ Γ all
Lyapunov exponents are negative.

• The synchronous motion is stable if γk = Gλk ∈ Γ for
k = 1, 2, . . . , n− 1, where λk are nonzero eigenvalues
of the coupling matrix H .

Master Stability Function Analysis

• For r0 = 1 there exists a single chaotic attractor.
• The maximum Lyapunov exponent lmax of the
generalized variational equation for r0 = 1 versus γ:
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• For γ < γ̄ ≈ −0.208 the maximum Lyapunov
exponent is negative.

• For n = 2 the eigenvalues of the coupling matrix H
are λ0 = 0, λ1 = −2, the synchronous chaotic motion
is stable if G > γ̄/λ1 = Ḡ ≈ 0.104.

• For n = 3 the eigenvalues of H are λ0 = 0 and
λ1 = λ2 = −3, the synchronous chaotic motion is
stable if G ≥ γ̄/λ1 = Ḡ ≈ 0.0693.

• Generally, for n ≥ 3 the eigenvalues of H are
λk = −4 sin2(πk/n), λ1 has the smallest nonzero
absolute value, the stability condition is

G ≥ γ̄λ−1
1 = −0.25γ̄/ sin2(π/n).

Simulation results, r0 = 1, n = 2

•G = 0.10 < Ḡ ≈ 0.104, unstable synchronized motion
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•G = 0.11 < Ḡ ≈ 0.104, stable synchronized motion
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Simulation results, r0 = 1, n = 6

• From the stability function analysis it follows that the
synchonouns chaotic motion is stable for
G > Ḡ ≈ 0.208.

•G = 0.15 < Ḡ, unsynchronized motion
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•G = 0.2 < Ḡ,
periods of synchronized behavior of adjacent oscillators
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•G = 0.25 > Ḡ, stable synchronized motion
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Master Stability Function Analysis,
r0 = 1.18

• There exists two self-symmetric chaotic attractors and
a symmetric pair of periodic attractors.

• The maximum Lyapunov exponent lmax of the
generalized variational equation for r0 = 1.18 versus γ:
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• Blue plot (the larger attractor): for γ < γ̄ ≈ −0.092
the maximum Lyapunov exponent is negative.

• Red plot (the smaller attractor): for γ < γ̄ ≈ −0.114
the maximum Lyapunov exponent is negative.

Simulation results, r0 = 1.18, n = 3

• Large amplitude chaotic motion.
• From the stability function analysis it follows that the
synchonouns chaotic motion is stable for
G > Ḡ ≈ 0.0307.

•G = 0.03 < Ḡ, unstable synchronized chaotic motion,
trajectory converges to a synchronized periodic motion
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•G = 0.033 > Ḡ, synchronized chaotic motion
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• Small amplitude chaotic motion.
• From the stability function analysis it follows that the
synchonouns chaotic motion is stable for
G > Ḡ ≈ 0.038.

•G = 0.033 < Ḡ, unstable synchronized chaotic
motion, trajectory converges to a synchronized
periodic motion
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•G = 0.04 > Ḡ, synchronized chaotic motion
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Conclusions

• Dynamics of coupled inductor-capacitor-memristor
oscillators has been studied.

• Synchronous chaotic motions have been observed.
• Stability conditions have been derived using the
master stability function approach.

• Results based on the master stability function
approach have been confirmed in simulations.

• It has been shown that stability conditions for
coexisting chaotic attractors may be different.

• For a given coupling strength one of the synchronous
chaotic motions can be stable while the other may be
unstable.
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