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Nonlinear dynamics of coupled
inductor-capacitor-memristor oscillators
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Introduction

« Memristors have received significant attention due to
a number of possible applications including large
capacity non-volatile memories and neuromorphic
systems.

= Design of memristor based neuromorphic systems
requires a thorough understanding of the nonlinear
dynamics of coupled memrsistor based oscillators.

Objectives

« otudy of the dynamics and the stability of
synchronized motions in coupled memristor based
oscillators.

Inductor-capacitor-memristor circuit

« Circuit equations:
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where x = 11, y = v¢, and z is the internal variable of
the memristor.

« Parameters: L = 0.025, C' = 0.025, o = 0.825, and
=10, rg=1o0rryg=1.18

« A single chaotic attractor for ry = 1, two chaotic and
two periodic attractors for ry = 1.18:

Ty = 1.18

« Equations of coupled oscillators
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where wy, = (T, yr, 21) | and H is the coupling
matrix.

« For n = 2 the coupling matrix is

—1 1
]¥_<1_%>.
« For n > 2 the coupling coefficients are
—2 for k =3,

Hy; = 1 for |k —jle{l,n—1},
0 otherwise.

Master Stability Function Approach

= The generalized variational equation

i = F(w), €= (F'(w)+ B
« Study the generalized variational equation as a

function of +.

= Identity the region I' C R such that for v € T" all
Lyapunov exponents are negative.

« The synchronous motion is stable if v. = GAp € I for
k=1,2,...,n— 1, where A\; are nonzero eigenvalues
of the coupling matrix H.

Master Stability Function Analysis

« For ry = 1 there exists a single chaotic attractor.

« The maximum Lyapunov exponent [, of the
eeneralized variational equation for ry = 1 versus +:
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« For v < v = —0.208 the maximum Lyapunov
exponent 1s negative.

« For n = 2 the eigenvalues of the coupling matrix H

are Ag = 0, Ay = —2, the synchronous chaotic motion
is stable if G > /A = G =~ 0.104.

« For n = 3 the eigenvalues of H are \j = 0 and

A1 = A = —3, the synchronous chaotic motion is
stable if G > v/ = G =~ 0.0693.

= Generally, for n > 3 the eigenvalues of H are
M\ = —4sin(mk/n), A\ has the smallest nonzero
absolute value, the stability condition is

G > A\ ' = —0.257/sin*(7/n).

Simulation results, 1y =1, n = 2

- G =0.10 < G &~ 0.104, unstable synchronized motion
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- G =0.11 < G =~ 0.104, stable synchronized motion
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Simulation results, 1o =1, n =6

« From the stability function analysis it follows that the
synchonouns chaotic motion is stable for

G > G~ 0.208.
- G =0.15 < G, unsynchronized motion

-G=02<G,
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- G =0.25 > G, stable synchronized motion
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Master Stability Function Analysis,
) = 1.18

« There exists two self-symmetric chaotic attractors and

a symmetric pair of periodic attractors.

The maximum Lyapunov exponent [, of the
generalized variational equation for ry = 1.18 versus +:
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Blue plot (the larger attractor): for v < v &~ —0.092
the maximum Lyapunov exponent is negative.

Red plot (the smaller attractor): for v < v ~ —0.114
the maximum Lyapunov exponent is negative.

Simulation results, rp = 1.18, n =3

Large amplitude chaotic motion.

From the stability function analysis it follows that the
synchonouns chaotic motion is stable for

G > G =~ 0.0307.

G = 0.03 < G, unstable synchronized chaotic motion,
trajectory converges to a synchronized periodic motion
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G = 0.033 > G, synchronized chaotic motion

Small amplitude chaotic motion.

From the stability function analysis it follows that the
synchonouns chaotic motion is stable for

G > G~ 0.038.

G = 0.033 < G, unstable synchronized chaotic
motion, trajectory converges to a synchronized
periodic motion

X0 | L | Yo | L | Y

G = 0.04 > G, synchronized chaotic motion
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Conclusions

Dynamics of coupled inductor-capacitor-memristor
oscillators has been studied.

Synchronous chaotic motions have been observed.

Stability conditions have been derived using the
master stability function approach.

Results based on the master stability function
approach have been confirmed in simulations.

It has been shown that stability conditions for
coexisting chaotic attractors may be different.

For a given coupling strength one of the synchronous
chaotic motions can be stable while the other may be
unstable.
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