

Nonlinear dynamics of coupled inductor-capacitor-memristor oscillators

Zbigniew Galias, galias@agh.edu.pl

Department of Electrical Engineering, AGH University of Science and Technology, Poland

Introduction

- Memristors have received significant attention due to a number of possible applications including large capacity non-volatile memories and neuromorphic systems.
- Design of memristor based neuromorphic systems requires a thorough understanding of the nonlinear dynamics of coupled memrsistor based oscillators.

Objectives

Master Stability Function Approach

• The generalized variational equation

 $\dot{w} = F(w), \quad \dot{\xi} = (F'(w) + \gamma E)\xi.$

- Study the generalized variational equation as a function of γ .
- Identify the region $\Gamma \subset \mathbb{R}$ such that for $\gamma \in \Gamma$ all Lyapunov exponents are negative.
- The synchronous motion is stable if $\gamma_k = G\lambda_k \in \Gamma$ for $k = 1, 2, \ldots, n - 1$, where λ_k are nonzero eigenvalues of the coupling matrix H.

Master Stability Function Analysis, $r_0 = 1.18$

- There exists two self-symmetric chaotic attractors and a symmetric pair of periodic attractors.
- The maximum Lyapunov exponent l_{max} of the generalized variational equation for $r_0 = 1.18$ versus γ :

- Study of the dynamics and the stability of synchronized motions in coupled memristor based oscillators.

Inductor-capacitor-memristor circuit

• Circuit equations:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = F \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (y - r_0 x)/L \\ (-x - \alpha y z)/C \\ -\beta + y^2 \end{pmatrix},$$

- where $x = i_L$, $y = v_C$, and z is the internal variable of the memristor.
- Parameters: $L = 0.025, C = 0.025, \alpha = 0.825$, and $\beta = 10, r_0 = 1 \text{ or } r_0 = 1.18$

Master Stability Function Analysis

• For $r_0 = 1$ there exists a single chaotic attractor. • The maximum Lyapunov exponent l_{max} of the generalized variational equation for $r_0 = 1$ versus γ :

- For $\gamma < \bar{\gamma} \approx -0.208$ the maximum Lyapunov exponent is negative.
- For n = 2 the eigenvalues of the coupling matrix Hare $\lambda_0 = 0$, $\lambda_1 = -2$, the synchronous chaotic motion is stable if $G > \bar{\gamma}/\lambda_1 = G \approx 0.104$.
- For n = 3 the eigenvalues of H are $\lambda_0 = 0$ and $\lambda_1 = \lambda_2 = -3$, the synchronous chaotic motion is stable if $G \geq \bar{\gamma}/\lambda_1 = G \approx 0.0693$.
- Generally, for $n \geq 3$ the eigenvalues of H are $\lambda_k = -4 \sin^2(\pi k/n), \lambda_1$ has the smallest nonzero absolute value, the stability condition is $G \geq \bar{\gamma}\lambda_1^{-1} = -0.25\bar{\gamma}/\sin^2(\pi/n).$

- Blue plot (the larger attractor): for $\gamma < \bar{\gamma} \approx -0.092$ the maximum Lyapunov exponent is negative.
- Red plot (the smaller attractor): for $\gamma < \bar{\gamma} \approx -0.114$ the maximum Lyapunov exponent is negative.

Simulation results, $r_0 = 1.18$, n = 3

- Large amplitude chaotic motion.
- From the stability function analysis it follows that the synchonouns chaotic motion is stable for $G > G \approx 0.0307.$
- G = 0.03 < G, unstable synchronized chaotic motion, trajectory converges to a synchronized periodic motion

• $G = 0.033 > \overline{G}$, synchronized chaotic motion

• A single chaotic attractor for $r_0 = 1$, two chaotic and two periodic attractors for $r_0 = 1.18$:

Ring of coupled oscillators

Simulation results, $r_0 = 1$, n = 2

• $G = 0.10 < \overline{G} \approx 0.104$, unstable synchronized motion

• $G = 0.11 < \overline{G} \approx 0.104$, stable synchronized motion

Simulation results, $r_0 = 1$, n = 6

- From the stability function analysis it follows that the synchonouns chaotic motion is stable for $G > G \approx 0.208.$

- Small amplitude chaotic motion.
- From the stability function analysis it follows that the synchonouns chaotic motion is stable for $G > G \approx 0.038.$
- G = 0.033 < G, unstable synchronized chaotic motion, trajectory converges to a synchronized periodic motion

• G = 0.04 > G, synchronized chaotic motion

Conclusions

• Dynamics of coupled inductor-capacitor-memristor oscillators has been studied.

• Equations of coupled oscillators

$$\dot{w}_k = F(w_k) + GE \sum_{j=0}^{n-1} H_{kj} w_j, \quad E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & C^{-1} & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

- where $w_k = (x_k, y_k, z_k)^{\top}$ and H is the coupling matrix.
- For n = 2 the coupling matrix is

 $H = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}.$

• For n > 2 the coupling coefficients are

$$H_{kj} = \begin{cases} -2 & \text{for } k = j, \\ 1 & \text{for } |k - j| \in \{1, n - 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

• G = 0.2 < G,

periods of synchronized behavior of adjacent oscillators

•
$$G = 0.25 > \overline{G}$$
, stable synchronized motion

- Synchronous chaotic motions have been observed.
- Stability conditions have been derived using the master stability function approach.
- Results based on the master stability function approach have been confirmed in simulations.
- It has been shown that stability conditions for coexisting chaotic attractors may be different.
- For a given coupling strength one of the synchronous chaotic motions can be stable while the other may be unstable.

Acknowledgements

Work supported by the National Science Centre, Poland, grant no. 2015/17/B/ST7/03763 and by the AGH University of Science and Technology.