Optimum Placement of Sectionalizing Switches in Distribution Networks with Alternative Supplies

Zbigniew Galias Department of Electrical and Power Engineering AGH University of Science and Technology Kraków, POLAND

24th May 2018, IEEE PES ISGT ASIA, Singapore

・ 同 ト ・ ヨ ト ・ ヨ ト

- Distribution networks with alternative supplies.
- Reliability indexes: SAIFI, SAIDI, and AENS.
- Efficient computation of reliability indexes.
- Optimization problem.
- Limiting the search space.
- Computational example.
- Conclusions.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Э

Distribution networks with alternative supplies

- The distribution grid has a radial structure with m line segments and m + 1 nodes,
 - $V = \{v_1, v_2, \dots, v_{m+1}\}$ is the set of nodes,
 - v_{m+1} is the main supply node (main generator),
 - distribution nodes: connected to at least two other nodes,
 - user nodes and auxiliary generators: connected to a single node,
 - c_j is the connection line between v_j and its parent node,
- λ_{vj} and λ_{cj} are the average failure rates (the average number of failures during one year) of the node v_j and the line segment c_j, respectively,
- t_{vj} and t_{cj} are the average total duration of failures during one year of the node v_j and the line segment c_j.

(ロ) (同) (E) (E) (E)

- P_j is the average active power dissipated at the *j*th node.
- N_j is the number of users at the jth node.
- $\bar{N} = \sum_{i=1}^{m} N_i$ is the total number of users.
- $\bar{P} = \sum_{i=1}^{m} P_i$ is the total average power.
- $\bar{\lambda} = \sum_{i=1}^{m+1} \lambda_{v_i} + \sum_{i=1}^{m+1} \lambda_{c_i}$ is the total failure rate (the sum of failure rates of all components in the network).
- $\bar{t} = \sum_{i=1}^{m+1} t_{v_j} + \sum_{i=1}^{m} t_{c_j}$ is the total interruption duration (the sum of failure durations of all components in the network).

Reliability indexes: SAIFI, SAIDI, and AENS

- System Average Interruption Frequency Index (SAIFI),
- System Average Interruption Duration Index (SAIDI)

$$\text{SAIFI} = \frac{\sum_{j=1}^{m} \mu_j N_j}{\sum_{j=1}^{m} N_j}, \qquad \text{SAIDI} = \frac{\sum_{j=1}^{m} U_j N_j}{\sum_{j=1}^{m} N_j},$$

 μ_j is the average number of interruptions and U_j is the average total duration of all interruptions involving the node v_j during one year.

• Average Energy Not Supplied (AENS)

$$AENS = \sum_{j=1}^{m} U_j P_j.$$

Optimization problem

• Without sectionalizing switches a failure at any location causes energy supply interruption in the entire network, i.e., $U_j = \text{const} = \bar{t}, \ \mu_j = \text{const} = \bar{\lambda} \text{ and}$

 $SAIFI = \overline{\lambda}, \qquad SAIDI = \overline{t}, \qquad AENS = \overline{t} \cdot \overline{P}.$

- Coefficients SAIFI, SAIDI, and AENS can be reduced by introducing sectionalizing switches at selected line segments.
- In case of a failure, we may disconnect a part of the grid and energy supply to the remaining part of the grid may be continued in spite of the fault.
- Γ = {γ₁, γ₂,..., γ_S} is the set of admissible positions of sectionalizing switches. Switches may be placed at both ends of each line segment, i.e. S ≤ 2m.
- The optimization problem: find the minimum value of AENS (SAIFI, SAIDI) which can be obtained using p sectionalizing switches, p ∈ {1,2,...,S}.

Efficient computation of SAIFI, SAIDI, and AENS

- Let Q = {γ_{i1}, γ_{i2},..., γ_{ip}} ⊂ Γ be a selected set of positions of p sectionalizing switches.
- Placing p switches splits the network into p + 1 components.
- Each γ_k ∈ Q starts a single component. The last component starts at the generator γ₀ (the root vertex).
- A tree structure based algorithm to compute AENS, SAIFI, and SAIDI:
 - the algorithm starts at γ_0 ,
 - the depth-first search (DFS) algorithm is used to visit the nodes,
 - gains achieved by installing switches in partial solutions are computed recursively starting from leaf nodes and moving towards γ_0 ,
 - the computations can be carried out in a single pass of the tree structure,
 - the computations are very fast.

Solving the optimization problem

Methods

- Exhaustive search.
- Heuristic methods:
 - Monte Carlo techniques,
 - evolutionary algorithms,
 - simulated annealing,
 - . . .
- For all methods it is important to limit the size of the search space.

・ 同 ト ・ ヨ ト ・ ヨ ト

Limiting the search space

• An example network with m = 11line segments including $m_s = 7$ single-powered line segments, $m_g = 2$ generator nodes, 5 user nodes and 5 distribution nodes,

- the number of admissible switch positions is S = 2m = 22 (both ends of each line segment),
- $N_{\rm ES} = {S \choose p}$ is the number of test selections for p switches in the exhaustive search approach,
- we do not need to consider sectionalizing switches at positions closest to each supply node: S is reduced to $2m m_g = 20$,
- in case of single-powered line segments it is sufficient to consider the position at the end which is closer to the power supply: S is reduced to $2m m_g m_s = 13$,
- the number of selections can be further reduced by eliminating partial solutions which cannot lead to optimal solutions.

Computational example

- A real network with from the southern part of Poland:
 - m = 77 line segments,
 - 78 nodes,
 - the number of supply nodes: $m_g = 1, 2, 3$.

- Failure rates (data provided by the electricity company):
 - 3.1 faults in one year for every 100 km of a line segment,
 - $\lambda_{c_j} = 3.1 imes 10^{-5} l_j$ for a line segment with the length l_j ,
 - $\lambda_{v_i} = 0.03$ for user nodes,
 - $\lambda_{v_i} = 0.002$ for distribution nodes.
- Average fault durations:
 - $au_{c_i} = 0.983 \, {
 m h}$ for line segments,
 - $\tau_{v_j} = 1 \, \mathrm{h}$ for user nodes,
 - $\tau_{v_j} = 0.5 \,\mathrm{h}$ for distribution nodes.

イロン スポン イヨン イヨン

Optimization of AENS using the exhaustive search

- Limiting the search space:
 - ES1: S = 2m = 154 (full search space),
 - ES2: $S = 2m m_g m_s = 154 2 64 = 88$,
 - ES3: eliminating non-optimum partial solutions.
- $N_{\rm ES}$ is the number of evaluations.
- *t*_{ES} is the total computation time.

р	$N_{\rm ES1}$	$t_{\rm ES1}$ [s]	$N_{\rm ES2}$	$t_{\rm ES2}$ [s]	N _{ES3}	$t_{\rm ES3}$ [s]
1	154	0.00	88	0.00	47	0.00
2	11781	0.14	3828	0.06	1081	0.02
3	$5.97\cdot 10^5$	3.77	$1.10\cdot 10^5$	0.74	16234	0.25
4	$2.25 \cdot 10^{7}$	142.93	$2.33 \cdot 10^{6}$	14.65	$1.79 \cdot 10^{5}$	2.01
5	$6.76\cdot 10^8$	4423.42	$3.92\cdot 10^7$	249.80	$1.55\cdot 10^6$	16.92
6			$5.41 \cdot 10^{8}$	3586.63	$1.10\cdot 10^7$	128.34
7			$6.35\cdot 10^9$	41231.31	$6.54 \cdot 10^7$	781.40
8					$3.35 \cdot 10^8$	3542.02
9					$1.50\cdot 10^9$	16838.91

- The computation algorithm can handle approximately 150000 selections in one second.
- the search space is considerably reduced by using the proposed elimination methods.

Optimization results versus the number of generators m_g

• Results relative to $AENS(\emptyset) = 7159$ and $SAIDI(\emptyset) = 2.329$.

	$m_g = 1$		$m_g = 2$		$m_g = 3$	
р	AENS	SAIDI	AENS	SAIDI	AENS	SAIDI
0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	0.6619	0.7371	0.4970	0.4998	0.4970	0.4998
2	0.5049	0.5424	0.3477	0.3516	0.3359	0.3516
3	0.4183	0.4288	0.2555	0.2513	0.2420	0.2508
4	0.3397	0.3247	0.2238	0.2225	0.1967	0.2039
5	0.2891	0.2906	0.2011	0.1974	0.1673	0.1789
6	0.2574	0.2725	0.1806	0.1793	0.1468	0.1571
7	0.2430	0.2564	0.1661	0.1633		
8	0.2316	0.2420	0.1563	0.1536		

- A general observation: increasing m_g significantly improves reliability indexes.
- Exception: when p = 1 no improvement for $m_g = 3$ when compared with $m_g = 2$.
- The improvement grows with *p*.
- For $m_g = 1$: AENS > 0.1651 for any p, for $m_g = 2$ one can reach AENS = 0.1563 using p = 8 switches.

• The optimum value obtained versus the value obtain when optimizing another index:

р	SAIDI _{OPT}	SAIDIAENS	AENS _{OPT}	AENS _{SAIDI}
0	1.0000	1.0000	1.0000	1.0000
1	0.4998	0.5385	0.4970	0.4972
2	0.3516	0.3520	0.3477	0.3514
3	0.2513	0.2514	0.2555	0.2558
4	0.2225	0.2359	0.2238	0.2328
5	0.1974	0.2070	0.2011	0.2123
6	0.1793	0.1819	0.1806	0.1825
7	0.1633	0.1658	0.1661	0.1680
8	0.1536	0.1536	0.1563	0.1563
9	0.1448	0.1448	0.1493	0.1493

- Optimizing a given reliability index may not necessarily lead to a close-to-optimum values of other indexes.
- For simultaneous optimization of several reliability measures a multi-objective optimization should be used.

- Efficient algorithms for the evaluation of reliability indexes for radial distribution networks with alternative supplies in the presence of sectionalizing switches have been presented.
- Methods to reduce the search space in the problem of optimum allocation of switches have been described.
- The proposed approach permits solving switch allocation problems using the exhaustive search method for a small number of switches and heuristic methods which require handling large number of test selections.
- Algorithms have been tested using a real network of a moderate size.

(ロ) (同) (E) (E) (E)