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Introduction

• Reducing the consequences of outages in power
distribution networks can be achieved by the
installation of sectionalizing switches [1].
• Various objectives are used to optimize positions of

switches, for example
• the System Average Interruption Frequency Index (SAIFI),
• the System Average Interruption Duration Index (SAIDI),
• the Average Energy Not Supplied (AENS).

• Optimization of one of the objectives is often not
equivalent to the minimization of another one [2].

Research goal

Development of a fast algorithm to simultaneously
minimize several reliability factors in single-feeder dis-
tribution networks with a radial topology.

Assumptions and notations

• The distribution network contains m distribution and
load nodes vj, 1 ≤ j ≤ m and a single generator
node vm+1, n = m + 1.
• The network has a tree structure: the generator node

is the root of the tree, load nodes are leaves.
• cj is the connection line between vj with its parent.
• Failure rates of vj and cj are λvj, λcj; λj = λvj + λcj.
• Total durations of failures in one year of vj and cj are
tvj, tcj; tj = tvj + tcj.
• Nj ≥ 0 and Pj ≥ 0 are the number of users and the

average (active) power of the node vj.
• Cj and Dj are the sets of indexes of children and

descendants of vj, respectively.
• P̄j = Pj + ∑

i∈Dj
Pi, N̄j = Nj + ∑

i∈Dj
Ni,

t̄j = tj + ∑
i∈Dj

ti, λ̄j = λj + ∑
i∈Dj

λi.

Multiobjective optimization

• The number of switches to be allocated is p.
• There are m admissible positions of switches.
• The search space: X = {Q ⊂ {1, . . . ,m} : #Q = p}.
• Rj is the set of switches in Qj = Q ∩Dj with a path

from vj not passing through another switch.
• SAIFI(Q), SAIDI(Q), and AENS(Q) are the

objective functions for the case when switches are at
positions in the set Q ⊂ {1, 2, . . . ,m}:

AENS(Q) = P̄n · t̄n −
∑
j∈Q

(
P̄n − P̄j

)(
t̄j −

∑
i∈Rj

t̄i

)
,

SAIDI(Q) = t̄n −
∑
j∈Q

N̄n − N̄j

N̄n

(
t̄j −

∑
i∈Rj

t̄i

)
,

SAIFI(Q) = λ̄n −
∑
j∈Q

N̄n − N̄j

N̄n

(
λ̄j −

∑
i∈Rj

λ̄i

)
.

• A dominated solution is a solution, which is
worse than another solution for each objective.
• The set of non-dominated solutions is called the
Pareto front: XP ={Q∈X : Q is non-dominated}.

Problem formulation

For given p solve the multiobjective optimization
problem, i.e., find all non-dominated solutions
with p sectionalizing switches.

Tree structure based algorithm

• The algorithm is based on the single-objective tree
structure optimization algorithm [3].
• Outline of the algorithm:
• Visit nodes following the tree structure from leaves to the

root node and construct partial solutions.
• Partial solutions for a given node are constructed based on

partial solutions found previously for its children.
• The partial solution s generated by Q at the position j is the

set of switches Qs = Q ∩ ({j} ∪Dj).
• For each partial solution compute gains in all objective

functions obtained for this partial solution:

gAENS =
∑
k∈Qs

(
P̄n − P̄k

)(
t̄k −

∑
i∈Rk

t̄i

)
,

gSAIDI =
∑
k∈Qs

N̄n − N̄k

N̄n

(
t̄k −

∑
i∈Rk

t̄i

)
,

gSAIFI =
∑
k∈Qs

N̄n − N̄k

N̄n

(
λ̄k −

∑
i∈Rk

λ̄i

)
.

• At each node compare partial solutions and skip those which
cannot lead to a non-dominated solution (to prevent from the
exponential growth of the number of partial solutions).

• At the root node from the set of complete solutions select
non-dominated solutions.

Test distribution network

• An existing network with m = 76 line segments, 39
load nodes, 37 distribution nodes and a single supply
node.
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Computational complexity

• Comparison of the tree structure (TS) based
algorithm with the exhaustive search (ES) method.
• Computation times (in seconds, 3.4 GHz processor)

to find the complete Pareto front:

p ES TS p ES TS
1 0.00 0.00 8 0.04
2 0.04 0.01 9 0.05
3 0.57 0.01 10 0.07
4 8.70 0.01 11 0.07
5 124.94 0.01 12 0.08
6 1706.25 0.02 13 0.10
7 0.02 14 0.08

• The ES method works only for p ≤ 6 (the
computation time grows exponentially with p).
• The results obtained using both methods are the

same (for p ≤ 6).
• Finding all non-dominating solutions for p ≤ 14

using the TS algorithm takes a fraction of a second.
• Conclusion: the proposed multiobjective

optimization algorithm is very efficient.

Optimization results

• Pareto front sizes for various combinations of
objective functions:

AENS
p AENS AENS SAIDI SAIDI

SAIDI SAIFI SAIFI SAIFI
1 3 3 1 3
2 3 3 1 3
3 2 2 1 2
4 1 1 1 1
5 1 1 1 1
6 2 2 1 2
7 2 2 1 2
8 4 4 1 4
9 8 6 2 8

10 6 3 2 6
11 4 1 4 4
12 6 3 2 6
13 4 2 2 4
14 4 2 2 4
15 6 3 2 6

• In most cases the Pareto front is nontrivial—contains
more than one element (neither solution can be
considered to be optimal for all objective functions
simultaneously).
• Example: the Pareto front for the AENS/SAIDI

multiobjective optimization problem, p = 9:
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Conclusions

• A tree structure based algorithm to solve the switch
allocation problem with multiple objectives has been
proposed.
• The algorithm has been tested using a network of a

moderate size showing its high efficiency.
• Multiobjective optimization may by useful in the

design and modernization of distribution networks.
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