Tree Structure Based Algorithm for Multiobjective Optimization of Switch Allocation in Radial Distribution Networks

Zbigniew Galias Department of Electrical and Power Engineering AGH University of Science and Technology, Kraków, POLAND

March 23, 2019, IEEE PES GTD ASIA, Bangkok

マロト イヨト イヨト

- Reducing the consequences of outages in power distribution networks can be achieved by the installation of sectionalizing switches.
- Various objectives are used to optimize positions of switches, for example
 - the System Average Interruption Frequency Index (SAIFI),
 - the System Average Interruption Duration Index (SAIDI),
 - the Average Energy Not Supplied (AENS).
- Optimization of one of the objectives is often not equivalent to the minimization of another one.
- Goal: Development of a fast algorithm to simultaneously minimize several reliability factors in single-feeder distribution networks with a radial topology.

イロト 不得 トイラト イラト 二日

Assumptions and notations

- The distribution network with a tree structure:
 - $V = \{v_1, v_2, \dots, v_m\}$ is the set of distribution and load nodes,
 - the supply node v_{m+1} is the root of the tree, n = m + 1,
 - load nodes are leaves,
 - c_j is the connection line between v_j and its parent,
 - C_j is the set of indexes of children of v_j .
 - D_j is the set of indexes of descendants of v_j .
- Distribution network parameters:
 - $N_j \ge 0$ is the number of users of the node v_j ,
 - $P_j \ge 0$ is average active power of the node v_j .
 - accumulated values: $\bar{P}_j = P_j + \sum_{i \in D_i} P_i$, $\bar{N}_j = N_j + \sum_{i \in D_i} N_i$,
 - λ_{v_j} and λ_{c_j} are the average failure rates of the node v_j and the line segment c_j,
 - t_{vj} and t_{cj} are the average total duration of failures during one year v_j and c_j,
 - $\lambda_j = \lambda_{v_j} + \lambda_{c_j}, \ t_j = t_{v_j} + t_{c_j},$
 - accumulated values: $\overline{t}_j = t_j + \sum_{i \in D_i} t_i$, $\overline{\lambda}_j = \lambda_j + \sum_{i \in D_i} \lambda_i$.

Objective functions: SAIFI, SAIDI, and AENS

• System Average Interruption Frequency Index (SAIFI),

$$\text{SAIFI} = \frac{\sum_{j=1}^{m} \mu_j N_j}{\sum_{j=1}^{m} N_j},$$

 μ_i is the average number of interruptions.

• System Average Interruption Duration Index (SAIDI)

$$\text{SAIDI} = \frac{\sum_{j=1}^{m} U_j N_j}{\sum_{j=1}^{m} N_j},$$

 U_j is the average total duration of all interruptions involving the node v_j during one year.

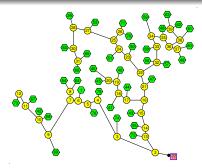
• Average Energy Not Supplied (AENS)

$$AENS = \sum_{j=1}^{m} U_j P_j.$$

・ロン ・四 と ・ ヨ と ・ 日 と

Multiobjective optimization problem

- The number of switches to be allocated is p.
- There are *m* admissible positions of switches.
- The search space: $X = \{Q \subset \{1, 2, \dots, m\} \colon \#Q = p\}.$
- *R_j* is the set of switches in *Q_j* = *Q* ∩ *D_j* with a path from *v_j* not passing through another switch.
- SAIFI(Q), SAIDI(Q), and AENS(Q) are the objectives for the case when switches are at positions in the set Q:
- A dominated solution is a solution, which is worse than another solution for each objective function.
- The set of non-dominated solutions is called the Pareto front: $X_P = \{Q \in X : Q \text{ is non-dominated}\}.$
- Multiobjective optimization problem: For given *p* find all non-dominated solutions with *p* sectionalizing switches.


イロト イポト イヨト イヨト

- The algorithm is based on the single-objective tree structure optimization algorithm.
- Outline of the algorithm:
 - Visit nodes following the tree structure from leaves to the root node and construct partial solutions.
 - Partial solutions for a given node are constructed based on partial solutions found previously for its children.
 - The partial solution s generated by Q at the position j is the set of switches Q_s = Q ∩ ({j} ∪ D_j).
 - For each partial solution compute gains in all objective functions obtained for this partial solution.
 - At each node compare partial solutions and skip those which cannot lead to a non-dominated solution (to prevent from the exponential growth of the number of partial solutions).
 - At the root node from the set of complete solutions select non-dominated solutions.

<ロ> (四) (四) (三) (三) (三)

Test distribution network

- A real network with from the southern part of Poland:
 - m = 76 line segments,
 - 39 load nodes,
 - 37 distribution nodes,
 - a single supply node.

• Failure rates (data provided by the electricity company):

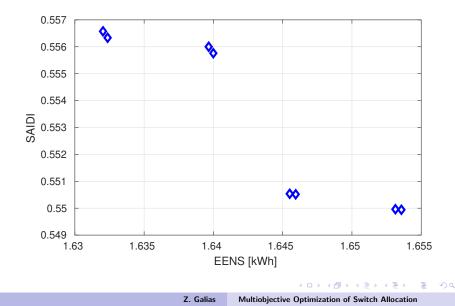
- 3.1 faults in one year for every 100 km of a line segment,
- $\lambda_{c_j} = 3.1 imes 10^{-5} l_j$ for a line segment with the length l_j ,
- $\lambda_{v_i} = 0.03$ for user nodes,
- $\lambda_{v_i} = 0.002$ for distribution nodes.
- Average fault durations:
 - $au_{c_i} = 0.983\,\mathrm{h}$ for line segments,
 - $\tau_{v_j} = 1 \, \mathrm{h}$ for user nodes,
 - $\tau_{v_j} = 0.5 \,\mathrm{h}$ for distribution nodes.

Computational complexity

- Computation times (in seconds, 3.4 GHz processor) to find the complete Pareto front using the the tree structure based algorithm (TS) and the exhaustive search method (ES).
- The ES method works only for *p* ≤ 6 (the computation time grows exponentially with *p*).
- The results obtained using both methods are the same (for p ≤ 6).
- Finding all non-dominating solutions for p ≤ 14 using the TS algorithm takes a fraction of a second.

p	ES	TS
1	0.00	0.00
2	0.04	0.01
3	0.57	0.01
4	8.70	0.01
5	124.94	0.01
6	1706.25	0.02
7		0.02
8		0.04
9		0.05
10		0.07
11		0.07
12		0.08
13		0.10
14		0.08

• Conclusion: the proposed multiobjective optimization algorithm is very efficient.


Multiobjective Optimization of Switch Allocation

Optimization results

• Pareto front sizes for various combinations of objective functions:

				AENS
р	AENS	AENS	SAIDI	SAIDI
	SAIDI	SAIFI	SAIFI	SAIFI
1	3	3	1	3
2	3	3	1	3
2 3 4 5	2	2	1	2
4	1	1	1	1
5	1	1 2	1	1
6	2	2	1	2
7	2	2	1	2
8	4	4	1	4
9	8	6	2 2	8
10	6	3	2	6
11	4	1	4	4
12	6	1 3 2 2	2 2	6
13	4	2	2	4
14	4	2	2	4

 In most cases the Pareto front is nontrivial—contains more than one element (neither solution can be considered to be optimal for all objective functions simultaneously). Example: the Pareto front for the AENS/SAIDI multiobjective optimization problem, p = 9

- A tree structure based algorithm to solve the switch allocation problem with multiple objectives has been proposed.
- The algorithm has been tested using a network of a moderate size showing its high efficiency.
- Multiobjective optimization may by useful in the design and modernization of distribution networks.

イロト 不得 トイラト イラト 二日