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ABSTRACT
In this work we describe a method to find for a contin-
uous system all low–period cycles embedded within a
numerically observed attractor. As an example of the
application of this technique, we construct the trapping
region for the Roessler system and find all periodic or-
bits of the associated Poincaré map up to period 11.

1. INTRODUCTION

It is well known that interval methods can be used to
prove the existence of periodic orbits for discrete dy-
namical systems [1, 2]. It has also been applied to con-
tinuous systems with piecewise linear [3] and smooth
[4] nonlinearities.

In this work, we describe a procedure that finds
all short periodic orbits embedded within a chaotic at-
tractor. The method consists of several steps. First a
trapping region for the Poincaré map is found. This re-
gion is then covered by boxes. The image of each box is
found and this information is used to construct the set
of admissible connections. Next, we construct a set of
periodic sequences of length n composed of admissible
connections. For each sequence the interval operator is
evaluated. In this way all period–n cycles enclosed in
the trapping region are found.

In section 2 the method is described in detail, and
in section 3 it is applied to the analysis of the Roessler
system.

2. ANALYSIS OF CONTINUOUS SYSTEMS

Let us consider a continuous dynamical system defined
by the set of ordinary differential equations

dx

dt
= f(x), (1)

where x ∈ Rm and f : Rm 7→ Rm is a C1 vector field.
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2.1. Poincaré map

As a first step of rigorous study, we reduce the contin-
uous system (1) to the discrete one using the Poincaré
map method. Let Σ be a hyperplane. The Poincaré
map P : Σ 7→ Σ is defined as P (x) = ϕ(τ(x), x), where
ϕ(t, x) is the trajectory of (1) based at x, and τ(x)
is the return time after which the trajectory ϕ(t, x) re-
turns to Σ. Periodic points of P correspond to periodic
orbits of the continuous system.

2.2. Periodic orbits of the Poincaré map

The interval Newton operator [1] is defined as

N(z) = ẑ − F ′(z)−1F (ẑ), (2)

where z is an interval vector, ẑ ∈ z, F ′(z) is the interval
matrix containing F ′(z) for z ∈ z. The most important
property of the interval Newton operator states that if
N(z) ⊂ z, then F has exactly one zero in z. On the
other hand, if N(z) ∩ z = ∅, then there is no zeros of
F in z. These properties allow one to study rigorously
the problem of the existence of zeros of F .

In order to find period–n orbits of P , we apply the
interval Newton operator to the map F : (Rm)n 7→
(Rm)n defined by [F (z)]k = x(k mod n)+1 − P (xk) for
k = 1, . . . , n, where z = (x1, . . . , xn)T. Clearly, F (z)=
0 if and only if x1 is a fixed point of Pn.

2.3. Evaluation of the Newton operator

For the rigorous evaluation of P (x), we integrate equa-
tion (1) using the Lohner method, which helps to re-
duce the wrapping effect [5, 6]. The image of x under
P is found as the intersection of Σ and the trajectory
computed by the rigorous integration procedure.

In order to find P ′(x), we also need to solve the vari-
ational equation dD

dt = ∂f
∂x (x(t))D, where D(t, x0) =

∂ϕ
∂x0

(t, x0) with the initial condition D(0, x0) = I. Let
y be the enclosure for the set {P (x) : x ∈ x}, D be the



enclosure for the solution of the variational equation
{D(t, x) : x ∈ x, t = τ(x)} and h be a vector orthogo-
nal to Σ. The enclosure for the Jacobian matrix of P
at x ∈ x can be found as

P ′(x) =
(

I − f(y)hT

hT f(y)

)
D. (3)

For the details see [4].

2.4. Finding all periodic orbits of length n

In the first step of the procedure, we construct the trap-
ping region for the Poincaré map. This region usually
can be found by choosing a polygon enclosing trajecto-
ries of the Poincaré map generated by the computer.

In the second step, we cover the trapping region by
boxes of a specified size. One option to find all peri-
odic orbits is to apply the combination of the interval
Newton method and a generalized bisection technique.
This method works fine for discrete systems (see [2, 7]).
For continuous systems, a better choice is to limit the
number of interval vectors on which we need to evalu-
ate the interval operator. To this end, we first find the
graph representation of the dynamics of the system.
We compute the image of each box and find the set
of admissible transitions between boxes. Transitions
represent edges of the directed graph. Once the graph
representation is found, we reduce the graph by remov-
ing vertices corresponding to boxes having empty inter-
section with the invariant part of the trapping region.
A box is removed if its image has empty intersection
with other boxes or if it has empty intersection with
images of all boxes. This procedure is continued until
no more boxes can be removed. In this way, we can
significantly reduce the size of the covering and hence
the search space for periodic orbits.

Next, we find all period–n cycles in the graph. For
each period–n cycle, we evaluate the interval operator
on the corresponding interval vector z and check what
is the position of N(z) with respect to z. If z∩N(z) = ∅,
then there is no period–n orbits in z. If N(z) ⊂ z,
then there exists exactly one period–n orbit inside z.
If neither of these two conditions hold, then one option
is to divide the interval vector z into smaller parts and
to evaluate the interval operator on each of them. For
long orbits, this leads to many divisions and a long
computation time (for example, for n = 10 and the
dimension of a Poincaré map equal to 2, we should
search the space of dimension 20). This is not feasible
and we choose a different method.

There are two reasons that neither of the two con-
ditions may be fulfilled. One is that the position of
the orbit is too close to the border of z. In this case,

we try to proceed by increasing the size of z. Namely,
we set the new value of z to be the convex hull of z
and (1+ε) N(z)−ε N(z). In many cases this technique
allows one to find a periodic orbit in z. The second
reason may be that the diameter of N(z) is larger than
the diameter of z. In this case, we should use a bi-
section technique, but as mentioned before this usually
will not work due to the size of the search space. In
such a case we stop the computations and try again
with a finer grid.

The computation time depends on the number of
period–n cycles in the graph. One way to reduce this
number is to find the cycles of the graph for a finer
division, and then to construct the graph for a division
with boxes two (or more) times larger in each direction.

3. NONLINEAR SYSTEM

As an example, we consider the Roessler system

d
dt

x1

x2

x3

 =

 −x2 − x3

x1 + ax2

b + x3(x1 − c)

 . (4)

We consider the system with the parameter values a =
0.2, b = 0.2, c = 5.7. A typical trajectory is shown in
Fig. 1.
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Fig. 1. Roessler attractor

In order to apply the methods described previously,
we choose a Poincaré map P defined by the hyperplane
Σ = {x ∈ R3 : x1 = 0, ẋ1 > 0}.

3.1. The existence of the trapping region

In order to construct a trapping region for P , we first
plot a trajectory of P (see Fig. 2). Next we choose a
region R enclosing the computer generated trajectory
and check rigorously whether its image is enclosed in
itself (P (R) ⊂ R). It should be noted that once we
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Fig. 2. Trajectory of the Poincaré map and two trap-
ping regions.

know that the Poincaré map is well defined on R, it is
sufficient to check the enclosure condition (P (x) ∈ R)
only at the border of R. Two examples of polygons be-
ing trapping regions for the map P are shown in Fig. 2.
In order to prove the enclosure condition for the larger
polygon we cover its border by 504 rectangles, evaluate
the Poincaré map on each of these rectangles, and check
that the images are enclosed in R. For the smaller set
we needed to cover the border by 8422 rectangles to
complete the proof.

The small trapping region has the advantage that
further study can be reduced to a smaller set, and hence
the computation time can be significantly shorter.

3.2. Generation of the graph

In the second step of the analysis, we cover the trapping
region by rectangles of the same size, find the image
of each rectangle, and construct the set of admissible
transitions between rectangles. Using the method de-
scribed in section 2 we remove boxes lying outside the
invariant part of the trapping region.

box size b c
0.0125× 0.000025 1675 8355

0.00625× 0.0000125 2808 12323
0.003125× 0.00000625 5258 22052

0.0015625× 0.000003125 10477 43681
0.00078125× 0.000001562 22416 96594

Table 1. Covering of the trapping region; b represents
the number of boxes and c the number of admissible
connections.

In Table 1 we report the number of boxes and ad-
missible connections for different box sizes. To see that

the reduction of the graph is an important step of the
analysis, let us note that for the boxes of size 0.003125×
0.00000625, there are 31722 boxes with 138821 connec-
tions before the reduction, and only 5258 boxes with
22052 connections after it.

3.3. Periodic orbits

Next, we find in the graph all cycles of a specified
length. For each cycle, we generate a sequence of inter-
val vectors and evaluate the interval operator on this
sequence. In this way, we were able to find all periodic
orbits up to period 11 (see Fig. 3).

x2

x3

-10 -5
0.028

0.03

0.032

Fig. 3. Periodic orbits of P with period n ≤ 11: fixed
point (◦), period–2 orbit (×+), two period–3 orbits (×),
period–4 orbit (•).

In table 2, we report the number Qn of periodic
orbits with period n, the number Pn of fixed points of
Pn, and certain computation details.

n Qn Pn Cn Tn time [s]
1 1 1 1 1 0.19
2 1 3 2 2 0.72
3 2 7 4 19 10.00
4 1 7 6 11 7.79
5 2 11 7 32 28.24
6 3 27 40 140 147.31
7 4 29 29 139 171.59
8 7 63 42 115 162.10
9 10 97 109 704 1116.05

10 15 163 1055 2381 5835.80
11 24 265 713 2802 7964.30

Table 2. Periodic orbits of P ; Qn is the number of
period–n cycles, Pn is the number of fixed points of
Pn, Cn is the number of period–n cycles in the graph,
Tn is the number of evaluations of the interval operator.
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Fig. 4. All periodic orbits of the Roessler system with period n ≤ 9.

The computations for n ≤ 9 were done for the box
size of 0.0015625× 0.000003125. After finding period–
n cycles in the graph, the number of cycles was re-
duced by increasing the grid size to 0.0125× 0.000025
(8 times). For example, for n = 8 we have found 21655
period–8 cycles and after increasing the grid size this
number was reduced to 42 (see Table 2). It is interest-
ing to note that the number of period–8 cycles for the
grid size of 0.0125× 0.000025 is 114106.

For the box size of 0.0015625 × 0.000003125 and
n = 10 the procedure was unsuccessful. To avoid the
large number of divisions in the bisection method, we
used a finer grid of 0.00078125× 0.000001562.

Periodic orbits of the continuous system correspond-
ing to periodic orbits of P with period n ≤ 9 are shown
in Fig. 4.

4. CONCLUSIONS

In this work, we have described a general method for
finding in a given region all low–period cycles for con-
tinuous systems. The method works under the assump-
tion that the Poincaré map is well defined and continu-
ous on this region. If the region encloses the attractor,
we can claim that all periodic orbits embedded within
the attractor are found.

The method can be applied without any modifica-
tions for higher dimensional systems. In such a case,
due to the necessity of searching a higher dimnesional
space computation times may be significantly larger.
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