
Coexistence of attractors in a one-dimensional CNN array

Z. Galias, M.J. Ogorza lek

Department of Electrical Engineering, University of Mining and Metallurgy,

al. Mickiewicza 30, 30-059 Krak�ow, Poland,

e-mail: galias@zet.agh.edu.pl, maciej@zet.agh.edu.pl

ABSTRACT: In this paper we investigate long-term (steady-state) behavior of a

one-dimensional array of chaotic circuits for di�erent connection strength. Using

computer experiments we have con�rmed the existence of a very large number of

stable steady{states depending only on the initial conditions applied in the individual

cells and on the connection strength. Of special interest is the coexistence of large

amplitude periodic oscillations in some cells and chaotic oscillations in the others,

that forms very complex spatial patterns.

1 Introduction

In the recent years there has been a growing interest in studies of systems composed of coupled nonlinear

oscillators (bi-stable, oscillatory or chaotic cells). Usually one considers a one of two{dimensional lattice

of nonlinear oscillators.

Lattice models naturally arise when using neural networks, arrays of electronic oscillators whose

dynamical behavior can be very complex both in time and space [4, 5, 6, 7, 8]. Such models, exhibiting

required collective behavior can be also used for simulations of a variety of phenomena observed in

real systems and for studies in physics, solid state electronics, chemical reactions, biology and medicine

[1, 2, 3, 9].

The dynamics of individual cells and the coupling between them prede�nes the overall system be-

havior. Among other types of collective dynamics one can observe various kinds of spatial, temporal

or spatio-temporal ordered structures referred to as self-organization [1] or \pattern formation". \Or-

ganized" behavior is usually linked with coherent (synchronized) behavior of a number of cells in the

network. Organized spatio-temporal behavior includes also propagation of waves including solitons and

autowaves, target waves, spiral waves and traveling wavefronts [8].

In this paper we study long-term (steady-state) behavior observed in a ring (one{dimensional array

with connected edges) of coupled Chua's chaotic circuits. Using computer experiments we have con�rmed

the existence of a very large number of stable �nal states depending only on the initial conditions applied

in the individual cells.

2 Experimental setup

Let us consider a one{dimensional lattice of simple third{order electronic oscillators (Chua's circuits).

The oscillators are coupled bi-directionally by means of two resistors cross-connected between the ca-

pacitors C

1

and C

2

of the neighboring cells. Every cell is connected with two nearest neighbors. The

dynamics of the lattice composed of n cells can be described by the following set of ordinary di�erential

equations [4], [5]:
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where f is a �ve{segment piecewise linear function:
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We consider the array of size 31. The �rst and the last cells are also connected and the lattice forms

a ring. In order to achieve this efect we use the following boundary conditions: x

0

= x

n

, z

0

:= z

n

,

x

n+1

:= x

1

and z

n+1

:= z

1

.

In simulation experiments we used typical parameter values for which an isolated Chua's circuit

generates chaotic oscillations | the double scroll attractor (C

1

= 1=9F , C

2

= 1F , L = 1=7H, G = 0:7S,

m

0

= �0:8, m

1

= �0:5, m

2

= 0:8, B

p

1

= 1, B

p

2

= 2). For these parameter values together with a chaotic

attractor there exist periodic orbit with a large amplitude. In the experiments we have considered the

uniform coupling G

1

2 [0:01; 0:1]. For the integration of the system the fourth-order Runge-Kutta

method was used with the time step � = 0:1.

3 Steady{states of the array for di�erent types of initial conditions

The steady{state of the network depends on the type of initial conditions. Two types of natural initial

conditions are possible. The �rst one corresponds to a cell oscillating in a chaotic regime with a trajectory

forming the double{scroll attractor. The second one corresponds to a cell sustaining periodic oscillations

with large amplitude. In this section we study the inuence of initial conditions on the steady{state of

the array. We consider three examples. In the �rst example all the cells are started with initial conditions

on the chaotic attractor. In the second case some cells have initial conditions on the chaotic attractor

while other cells have initial conditions on the large amplitude periodic orbit. In the last case initial

conditions of all the cells are picked on the periodic orbit. For each case we couple the circuits using

di�erent G

1

.

3.1 Initial conditions on chaotic attractor

In the �rst experiment we have coupled 31 chaotic Chua's circuits with initial conditions on the chaotic

double{scroll attractor. We have checked what is the steady{state behavior for di�erent values of coupling

conductance G

1

2 [0:01; 0:1]. The results are plotted in Fig. 1. In each line we show the behavior of 12

adjacent cells. For each cell we plot projection of the cell state on the y

i

; z

i

plane. In Fig. 1a{d the range

for y

i

and z

i

variables is [�2; 2] while in Fig. 1e{h the range is increased to y

i

2 [�12; 12] and z

i

2 [�5; 5].

For very weak coupling (G

1

= 0:01) all the cells behaves as they are not coupled at all (Fig. 1a). For

every cells the plot is very similar to the double{scroll attractor. The only di�erence is that switching

between two scrolls are less frequent. If we increase the coupling slightly (G

1

= 0:02) we observe that

all the cells behave periodically (see Fig. 1b). Fourteen of the cells have trajectories belonging to the

upper plane and seventeen to the lower plane. For the coupling conductance G

1

= 0:03 the trajectories

are again of double{scroll type but switchings between two scrolls are now very seldom (see Fig. 1c). For

t = 200 trajectory of only one cell visit both half-planes. See also that the attractor is smaller than for

G

1

= 0:01 (compare Fig. 1a). If we again increase coupling strength (G

1

= 0:04) we observe that the

steady{state is chaotic. This time every cell displays a Roessler{type attractor (single scroll). After a

transient we observe no switchings between upper and lower half-planes.

For G

1

= 0:045 the behavior of the array is very interesting. Two cells (i = 3; 4) display oscillations

of large amplitude (see Fig. 1e). These two cells are almost perfectly synchronized. Two adjacent cells

(i = 2; 5) behave chaotically (medium amplitude) while other cells behave chaotically (small amplitude)

with trajectories forming Roessler{type attractors. In this case all the cells behave chaotically. Chaos

is not visible in the behavior of two cells with large oscillations (small chaotic signal is added to large

periodic oscillations). For stronger coupling G

1

= 0:05 ten cells are in a large amplitude \periodic"

mode, four cells behave unperiodically (medium size oscillations), other cells show very small oscillations

(amplitude of oscillation depends on the distance from cells sustaining large amplitude oscillations. For

G

1

= 0:06 all the cells behave periodically. For two cells (i = 15; 16) the amplitude of oscillations is

small while for the other cells the amplitude of oscillations is large (Fig. 1g). If we further increase

the coupling strength (G

1

= 0:07) we observe that all the cells are perfectly synchronized and display

periodic oscillations of large amplitude (compare Fig. 1h). Similar results are observed for stronger

coupling G

1

= 0:08, G

1

= 0:1.

3.2 Mixed initial conditions

In the second experiment initial conditions of 3 cells were picked on the chaotic attractor (i = 9; 15; 25)

while other cells were initially behaving periodically (large amplitude oscillations). For these initial
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Figure 1: Steady state behavior of the lattice of chaotic cells with initial conditions lying on the chaotic

attractor for di�erent coupling conductance G

1

. The projection of attractor onto the y

i

; z

i

plane for cells

i = 1; : : : ; 12 (i = 11; : : : ; 22 for case (g)) is shown. (a){(d) y

i

; z

i

2 [�2; 2], (e){(h) y

i

2 [�12; 12] and

z

i

2 [�5; 5]



conditions there is a smaller number of di�erent steady{state behavior types. For G

1

= 0:01 and

G

1

= 0:02 the three cells with initial conditions on chaotic attractor remains chaotic while the other cells

display large \periodic" oscillations. Due to connection between cells small chaotic signal is observed

also in cells behaving \periodically". For G

1

= 0:02 one can see long periods of almost periodic behavior.

For G

1

= 0:05 two cells (i = 9; 25) remains in a chaotic regime of small amplitude while the third cell

starting from the chaotic attractor escapes to \periodic" mode. For G

1

= 0:06, G

1

= 0:07 we observe long

transient but �nally all the cells are synchronized (large amplitude periodic oscillations). For G

1

= 0:08

two cells (i = 15; 25) escape to \periodic" mode while the cell i = 9 remains in a chaotic regime. The

neighbors of the 9

th

cell oscillate with the opposite phase forming a \sea-saw" pro�le of the wave. For

G

1

= 0:085 all the cells �nally are in a periodic mode (large oscillations) but this time cells are not

synchronized. One can observe traveling wave front moving in the left direction. For G

1

= 0:09 all the

cells are synchronized, and for G

1

= 0:1 we again observe wave front moving in the left direction.

3.3 Initial conditions on the large amplitude periodic orbit

In this experiment we have coupled 31 cells with initial conditions on the large amplitude periodic orbit.

For this type of initial conditions we have observed either full synchronization or a traveling wave. For

weak coupling G

1

= 0:01; 0:02; 0:03 the steady{state of the network was a traveling wave moving in the

right direction. For strong coupling G

1

= 0:04; 0:05;0:07;0:08; 0:1 all the cells in the steady{state were

synchronized.

3.4 Inuence of initial conditions | summary

If the cell before coupling was behaving chaotically two di�erent types of steady state behavior are ob-

served. For small coupling the cell displays chaotic oscillations or periodic oscillations of small amplitude.

For larger coupling the cell may enter the large amplitude periodic regime. Its trajectory may also remain

chaotic or converge to a �xed point (possibly modulated with chaotic motion of a very small amplitude).

If the behavior of the cell before coupling was periodic (large amplitude oscillations) only one type

of behavior is observed. The cell in the steady{state displays oscillations of large amplitude. These

oscillations are periodic. These large amplitude oscillations may be modulated with a chaotic oscillations

of a small amplitude if there are some cells in the array oscillating chaotically.

4 Steady{states for di�erent coupling strength

In this section we investigate the inuence of coupling strength on the number and types of steady states

existing in lattice.

4.1 Strong coupling

First we consider strong coupling G

1

= 0:1. We simulated the array of Chua's circuits starting from

random initial conditions. We have observed that eventually all the cells were displaying periodic oscil-

lations of large amplitude. The network as a whole converged to one of the �ve steady{state behaviors

corresponding to di�erent wave pro�les. Four of them are shown in Fig. 2. The �rst type is a synchro-

nized behavior (see Fig. 2a), where all cells follow the same trajectory and there is no di�erence in phase

between the cells. In the second type all the cells also follow the same trajectory but there is a slight

di�erence in the phase between adjacent cells. The total di�erence is 2� and one can see a single{hump

wave moving in the left direction (compare Fig. 2b). The next type of steady{state behavior is very

similar to the second one | the only di�erence is the direction of the wave (compare Fig. 2c). The last

two types correspond to double{hump waves moving in the left and right directions (compare Fig. 2d).

In spite of extensive simulations we have not found initial conditions leading to a di�erent steady{state

behavior.

One could expect that for a longer lattice there exist stable waves with many humps developing in

the system. The development of a single-hump wave is very interesting. Although initially the slopes

of the hump are steep and the length of the wave is small eventually the length of the wave becomes

exactly the length of the lattice. It seems that the \natural" length of this wave is smaller than the

length of the considered lattice. We think that even for n = 31 one could observe a three{hump wave

but the chance to get one starting from random initial conditions is very small.
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Figure 2: Possible pro�les of traveling waves observed in the lattice for strong coupling G

1

= 0:1, (a)

synchronized behavior, (b) single{hump wave moving in the right direction, (c) single{hump wave moving

in the left direction, (d) double{hump wave moving in the left direction

4.2 Medium coupling

Now we consider the circuits coupled by the conductances G

1

= 0:05. As before we initiate the network

using random initial conditions. For small amplitude of initial conditions the steady{state is zero (all the

cells settle in a �xed point x = y = z = 0) (compare also �xed point attractor for some cells in Fig. 1f).

One can easily prove that the origin is stable for G

1

2 [0:05; 0:0586]. If we increase the amplitude of

initial conditions then some of the cells enters oscillations of large amplitude and some of them settle in

a �xed point. It is also possible that some cells behave chaotically. Four of the possible wave pro�les are

shown in Fig. 3.

Let us look closer into the �rst example (see Fig. 3a). The cells i = 13 displays periodic oscillations

of large amplitude. Its neighbors (i = 12; 14) show periodic oscillations of small amplitude (symmetric

to the origin). Their neighbors i = 13; 15 also oscillate periodically but the amplitude is much smaller.

This is an example of coexistence of large amplitude oscillations (i = 13) and a �xed point behavior

(i = 12; 14), modulated by periodic motion of the neighbor. Due to the non{zero coupling this modulation

propagates through the array. The amplitude of periodic oscillations depends on the distance from the

cell sustaining large periodic oscillations. In this �gure we have also groups of cells with large periodic

oscillations. One of the groups consists of two cells i = 5; 6. The second one is composed of 7 cells

(i = 28; : : :3). The cells in each group are quite well synchronized. Such a group of cells oscillating in

a synchronized way is called a cluster. Of particular interest is the cell i = 4. Its neighbors belong to

di�erent clusters. Hence its �xed point attractor is modulated by non-synchronized oscillations from two

cells. It displays very complex (possibly chaotic) behavior.

If we further increase the amplitude of initial conditions all the cells enter the large amplitude oscil-

lations and we may see waves similar to the ones observed for strong coupling (synchronized behavior,

single and double{hump waves)(comapre Fig. 2).

All the steady{states observed seem to be stable. We have performed several experiments adding

some noise to the steady{state. If the amplitude of the noise was small enough the steady{state of the

network was not changed.

5 Conclusions

In this paper we have studied the inuence of initial conditions and coupling strength on long-term

behavior of the array of locally coupled chaotic circuits. We have found an extremely rich variety

of patterns and wave pro�les existing as a steady{state of the considered system. When all the cells

operate in the large amplitude periodic mode the array as a whole displays a wave with one of the several

pro�les (synchronization, single{hump and double{hump waves). In the opposite case one can observe

the coexistence of large amplitude oscillations with a �xed point behavior or the coexistence of large

amplitude oscillations with chaotic behavior. For particular coupling it is also possible that all the cells

sustain periodic oscillations with small amplitude.



(a)

5 10 15 20 25 30
−4

−2

0

2

4
(b)

5 10 15 20 25 30
−4

−2

0

2

4

(c)

5 10 15 20 25 30
−4

−2

0

2

4
(d)

5 10 15 20 25 30
−4

−2

0

2

4

Figure 3: Examples of waves observed in the lattice for medium coupling G

1

= 0:05

In our future work we would like to investigate the possibility of controlling the patterns observed in

the array by imposing some boundary conditions (for examples constant or periodic) instead of connecting

the edges of the lattice. We would like also to study the possibility of existence of such waveforms in a

two{dimensional array of chaotic cells. In our previous work [4, 5] we have observed the synchronized

behavior and various patterns composed of spiral waves but we did not observe wavefront traveling from

right to left or from bottom to top.
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