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Abstract

In this paper we propose a multilevel version of the Differential Chaos Shift Keying (DCSK) telecommunication
system. The scheme, which we call Quadrature Chaos Shift Keying (QCSK), is based upon the generation of an
orthogonal basis of chaotic functions. QCSK is characterized by an increased data rate with respect to DCSK, with the
same bandwidth occupation, resulting in an improved spectral efficiency. The price for the performance enhancement is
the increased complexity of both the transmitter and the receiver.
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I. INTRODUCTION

In the last few years a great research effort has been devoted towards the development of efficient chaos-based
modulation techniques [1], [2], [3], [4], [5], [6], [7]. Among the several systems proposed, one of the best bit error
rate (BER) performances has been achieved by the DCSK (Differential Chaos Shift Keying) scheme [4] and
its variation utilizing frequency modulation, that is FM-DCSK [5]. These schemes are based upon wideband
chaotic signals which under severe multipath propagation exhibit a better performance than conventional
systems based on sinusoidal carriers [8]. DCSK is a transmitted-reference digital signaling scheme [9]. For
each symbol period, the DCSK signal consists of a piece of chaotic waveform, followed by a non-inverted or
inverted copy of itself, depending on the binary symbol (“0” or “1”) to be transmitted. In [10] the first and
the second part of the DCSK signal are called reference and information-bearing chip, respectively.

Recently, several different methods have been proposed in the literature to increase the data rate of
DCSK [11], [12]. The simplest option consists of scaling the information and/or the reference parts of the
signal. For example the information-bearing part may be multiplied by a number depending on the symbol
transmitted. A more sophisticated approach uses two chaotic basis functions and divides the symbol period
into four time slots in order to obtain a multilevel scheme [11]. These methods, though, achieve higher data
rate by giving up some of the BER performance.

In this work we introduce a novel multilevel chaos-based communication scheme called QCSK (Quadrature
Chaos Shift Keying) characterized by the same bandwidth occupation and similar BER performance as DCSK,
but higher data rate.

QCSK may be considered as the chaotic counterpart of QPSK (Quadrature Phase Shift Keying) in con-
ventional digital communications. We recall [9] that QPSK exhibits the same BER performance as BPSK
(Binary Phase Shift Keying) with the same bandwidth occupation, but double data rate. This is achieved
by employing a quadrature pair of sinusoidal carriers to generate an orthogonal signal basis. Since the basis
components are orthogonal, they can be used to modulate information separately as for two BPSK systems
sharing the same channel without (ideally) interfering with each other. Orthogonal basis functions, usually
sinusoids, are used in digital communications to generate large signal constellations in order to increase the
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spectral efficiency. Typical examples are M-ary PSK (Phase Shift Keying) where the phase of the transmit-
ted signal is varied among M discrete values and QAM (Quadrature Amplitude Modulation) where both the
amplitude and the phase of the reference sinusoid are varied [13].

The basic idea underlying the QCSK scheme is the generation of chaotic signals which are orthogonal
in a specified time interval. This allows the creation of a basis of chaotic functions from which arbitrary
constellations of chaotic signals can be constructed. For instance, in QCSK a linear combination of two chaotic
basis functions is used to encode four symbols. The key point for exploiting this idea in a communication
system is that one must be able to generate the chaotic basis functions starting from a single chaotic signal.
The same concept holds for conventional digital communication schemes such as QPSK, where the quadrature
component can be obtained from the in phase one by means of a simple phase shifter.

The paper is organized as follows. In Sec. II we recall the operation principle of DCSK comparing it to
BPSK. Sec. III deals with the generation of a basis of chaotic signals. In Sec. IV we describe in details the
operation of the proposed QCSK scheme. Then, in Sec. V we present the theoretical and simulation results
for the performance of QCSK in the presence of noise. Finally, in Sec. VI we discuss the general case of
chaos-based multilevel signaling schemes.

II. DIFFERENTIAL CHAOS SHIFT KEYING

In DCSK two chaotic sample functions are sent for each symbol period, corresponding to one bit of infor-
mation. The first function is used as a reference, while the second represents the information-bearing part of
the signal. On the receiver side one observes a noisy version of the transmitted signal. The digital information
is extracted by means of differentially coherent demodulation [10]. Namely, at the receiver the correlation be-
tween the two received chaotic functions is computed. The output of the correlator is then sampled according
to the symbol time and a decision on the received symbol is taken.

A. DCSK versus BPSK

Differential Chaos Shift Keying is in some sense similar to the BPSK modulation scheme [9]. In BPSK
one transmits a sin(-) function signal or its inverted version depending on the bit of information. In principle
DCSK does exactly the same except that the chaotic signal used for sending the information is different for
each bit, thus one needs to send the corresponding reference signal as well in order to enable the detection at
the receiver.

One of the modifications of BPSK is the QPSK scheme, which exhibits the same BER performance as
BPSK, but is more efficient by having a double data rate. Basically, in QPSK a two-bit symbol is encoded
as a linear combination of two orthogonal waveforms (sin and cos). In the rest of this paper we describe how
this idea can be applied for increasing the data rate of DCSK.

III. ORTHOGONAL CHAOTIC SIGNALS

The first step for introducing QCSK is the generation of a (chaotic) signal orthogonal to a given chaotic
reference signal in a specified time interval. Typically, two independent chaotic signals ¢;(¢) and ¢y(¢) (or even
different segments of the same chaotic waveform) exhibit a very low cross-correlation (resp. auto-correlation)
and in that sense they might be considered approximately orthogonal over a sufficiently long time interval [0, 7]:

/ " e (Des(t)dt ~ 0.
0

In order to produce an orthogonal basis function useful for communication purposes we are interested in
the generation of a chaotic signal y exactly orthogonal to a reference chaotic signal x, and which could be
generated starting from z. This problem is the subject of the next subsection.
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A. Complementary Signal

Let z(t) be a chaotic reference signal defined for ¢ € [0, 7]. Let us assume that the signal z has zero mean
value! and that in the interval [0, 7] it admits the following Fourier expansion (with fo = 0):

2(t) =) fesin(kwt + op), (1)

k=1

where w = 27 /7. Correspondingly, we denote by P, the average power of z(¢) in the time interval [0, 7]:

LTy I
Pw_T/Ox(t)dt_QI;fk. (2)

We define the complementary signal y(t), with ¢ € [0, 7], as the signal obtained by changing the phase of each
Fourier frequency component by 7/2, namely:

o0

y(t) =Y frsin(kwt + ¢ — 7/2). (3)

k=1

The signals z(t) and y(t) are orthogonal in the interval I, = [0, 7] and have the same power, that is:

rly = / z(t)y(t)dt =0, (4)
0
P,=P, = — | z°(t)dt=— [ y~(t)dt. (5)
T Jo T Jo
The above properties follow from:

1 [ Lf2cos(a+p) fork=m

z : _ : _ __ ) 27k ;
. /0 frsin(kwt + o — @) fr sin(mwt + o, — B)dt { 0 for k £ m. (6)

An example of a chaotic signal z and the corresponding orthogonal signal y is shown in Fig. 1.

B. Relationship with Hilbert Transform

Referring to the definition (3) of the complementary signal y, we observe that by extending z(¢) and y(?)
to periodic signals with period 7, y(t) represents the Hilbert transform of z(t). We recall that the Hilbert
transform of a real signal is obtained by introducing a 7/2 phase shift in every frequency component. This
property is well known and exploited for example in the context of amplitude modulation (AM) for obtaining
a single (suppressed-carrier) sideband (SSB) signal [9]. Note also that the Hilbert transform preserves the
spectral properties of the signal; hence we can conclude that the signals x and y have the same bandwidth
occupation.

C. Practical Algorithms

So far, several methods have been developed to design finite impulse response (FIR) and infinite impulse
response (IIR) digital Hilbert transformers such as the Remez exchange algorithm [14], eigenfilter method [15],
and weighted least squares method [16]. Moreover, there are several methods for implementing the Hilbert
transformer, including switched-capacitor implementation [17], neural network [18], and multiplierless trian-
gular array realization [19]. Typically, these methods provide only an approximation of the Hilbert transform,
as the ideal Hilbert filter impulse response extends infinitely in both directions. However, in this work rather
than producing the ideal Hilbert transform, we are interested in generating the complementary signal y (given
x) such that the orthogonality condition (4) is exactly satisfied over a given time interval.

We present here three methods, two of which are suitable for discrete-time signals (C.1 and C.2) and one
for continuous-time signals (C.3).

!This assumption simply implies that the DC value of the reference signal x(t) is filtered out.



IEEE TRANS. CIRCUITS AND SYSTEMS—I, FEBRUARY 2001 3

C.1 Frequency Domain Approach
Given a length-K chaotic sequence z = {mj}]l.(zl we can generate the complementary signal y = {yj}][.(:1
according to the following procedure, in analogy with the AM-SSB modulation [20].

1. Subtract the mean value from the input sequence (and if necessary zero pad such that K = 2"):
o =T —T.

2. Calculate the fast Fourier transform (FFT):
xy = F[xo].

3. Create a vector h whose elements h(j) have the values
o 1 forj=1,(K/2)+1,
e 2forj=23,...,(K/2),
e 0 forj=(K/2)+2,...,K,
and calculate z;, as the element-wise product of h and ; (this operation corresponds to eliminate the FFT
coefficients associated with negative frequencies, preserving the signal energy);
4. Take the inverse FFT:
y=F "lan].

In practice, the algorithm described can be implemented by means of a DSP (digital signal processor) unit.

C.2 Time Domain Approach

Another viable method to compute the Hilbert transform of a given discrete-time signal x is to design a
FIR (Finite Impulse Response) filter approximation to the Hilbert transform operator. An FIR filter can be
designed by appropriately windowing the ideal impulse response [21]:

in?(mk/2
h(k) = { 2GR o ko, (7)
0 for k=0.

Note that Eq. (7) describes a noncausal filter, which means that in practice a delay m is in the filter response.
Namely, the orthogonal vector y can be generated by convolution of = with h:

m
y(k) = Y alk+)h().
j=—m
Of course, due to the finite number of taps, the FIR implementation provides an approximation of the Hilbert
transform. For a discussion of the filter length selection refer to [21].

C.3 Allpass Filters

In the continuous-time domain the Hilbert transform operation may be realized by an allpass filter with
unity gain and phase response equal to 7/2 over a certain frequency range [22]. Typically the ideal response
is approximated by means of elliptical filters. However, in practice it is hard to obtain the desired response
over a sufficiently wide bandwidth. In addition, as noted above the ideal Hilbert transform filter is noncausal.
In the continuous-time implementation, though, adding a delay to make the filter causal also adds a constant
phase delay. This results in a linear phase component which is an undesirable effect.

D. Chaotic Signal Constellations

The main advantage of producing an orthogonal basis of chaotic functions [z(t),y(¢)] is that large signal
sets can be generated, resulting in high spectral efficiency. Referring to (2), an orthonormal basis of chaotic
sample functions over the interval I, = [0, 7] can be defined as follows:

1 1

C = [ealt), ¢y (1)] =
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Chaotic signal constellations
‘ s ‘ mg = ag + 1bg ‘ mg(t)
s=0 1 +cz (%)
DCSK1 1 ) ()
s=0 i +cy(t)
DCSK2 1 = —cZ(t)
s=0 1 +eg(t)
s=1 i +cy(t)
QOSKI s=2 —1q —cz(t)
s=3 -1 —c (1)
s=0 | (+1+ i)/ﬁ (ca(t) + cy(t))/ﬁ
s=1| (=1+19)/vV2 | (—ce(t) +¢y(t))/V2
QOSK2 | o | (+1-0)/V2 | (+ealt) - o (0))/V2
5=3 | (=1 -19)/V2 | (—ca(t) — (1)) /V2

TABLE I
CHAOTIC SIGNAL CONSTELLATIONS AND CORRESPONDING SIGNALS FOR THE CASES (A), (B), (¢), (D) oF FiG. 3.

where: E; = P,7, is the energy associated with z (and y) over I, such that:

/Oci(t)dt:/o cy(t)ydt =1, (8)

(and of course: [ c;(t)c,(t)dt = 0). The orthonormality condition (8) implies that the energy associated
with the signals ¢;(t) and c,(t) is constant for every interval I; and in particular equals unity.
A constellation of chaotic signals can then be generated as linear combinations of the basis signal ¢, and
cy, that is:
ms(t) = ascy(t) + bsey(?),

where the index s identifies the symbol in the signal space. Equivalently, the symbol s can be represented as
a complex number?:
ms = ag + 1bs.

In this work we consider the four signal constellations shown in Fig. 3, whose analytical representations
are reported in Table I. Constellations (a) and (b) are two-level signaling, the first one being the ordinary
binary DCSK. The case (b) may have the advantage—with respect to conventional DCSK-—that the signal
transmitted is never repeated, thus resulting possibly in a low probability of interception (LPI). On the other
hand, Fig. 3(c,d) show the signal constellations corresponding to two versions of a four-level QCSK chaotic
signaling scheme. Finally, one can easily verify that for all cases considered:

/0 " m2(tydt = 1. )

i.e. the information signal mg is also characterized by constant energy, in particular equal to unity.

In the rest of the paper it should be clear from the context whether we are referring to the function of time s (t) or to the
corresponding complex number m.
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V. QUADRATURE CHAOS SHIFT KEYING

The aim of this section is to illustrate the QCSK modulation scheme, whose simplified block diagram
is shown in Fig. 2. For the sake of simplicity we consider here a baseband system. It is clear, though,
that if the scheme is to be employed for instance for wireless communications a modulator to generate the
corresponding RF passband signal is needed. Furthermore, we assume that the description of the QCSK
scheme in the continuous-time domain admits an equivalent discrete-time representation. According to the
sampling theorem [9] it suffices that the sampling rate f; > 2B, where B is the max bandwidth occupation of
the corresponding continuous-time signals. With these notations, a time interval At maps in the discrete-time
domain to Ak = At/ts, where t; = 1/ f is the sampling time interval.

A. QCSK Modulation

In QCSK, similarly to DCSK, to send the symbol s we transmit for half symbol period the chaotic reference
chip r(t) = v/Fpc,(t) and in the second half the information-bearing chip i(t) = v/Eyms(t), where s denotes
the symbol to be transmitted and Ej is the energy per bit. From the orthonormality condition (8) and from (9)
it follows Ep = const., that is the energy per bit is constant for every transmitted bit. In practice, the same
result may be achieved by using the chaotic signals « and y to drive a frequency modulator, as it is done in
FM-DCSK [5].

In formulae, by denoting with T" = 27 the symbol period, the QCSK transmitted signal can be expressed
as:

Socrcn () = VEyca(t) for 0<t<T/2
Qes(f) = { VB (asea(t — T/2) + byey(t — T/2) for T/2<t<T,

where for QCSK: s =0, 1,2, 3.

Referring to the block diagram in Fig. 2, the QCSK modulator consists of a chaotic generator producing the
signal ¢, for each time interval [0,7'/2]. The corresponding orthogonal signal ¢, is generated by the Hilbert
filter, that for simplicity we assume to introduce no extra-delay.®> The encoder produces a linear combination
of the signals ¢, and ¢y, depending on the symbol s to be transmitted. The latter information is provided
by the Bit/Symbol converter, mapping each input bit pair to the corresponding symbol. As a result two
bits of information are transmitted for each symbol period 7. Then, a two-channel analog multiplexer, with
switching time equal to T'/2, is used to form the QCSK signal. Note that, although not explicitly represented
in Fig. 2, the QCSK scheme must include a lowpass bandlimiting filter limiting the bandwidth of the signal
to be transmitted over the channel. It is indeed clear that every physical channel possesses finite bandwidth.

B. QCSK Demodulation
The QCSK signal can be demodulated by using differentially coherent detection [10]. In this work we will

assume symbol time synchronization, that is the receiver “knows” the beginning of each symbol frame (of du-
ration 7T') for starting the correlation process. This is a standard assumption when analyzing a communication
system [23].

Theoretically, by correlating the information-bearing part of the signal i(t) = \/Epm(t) with the chaotic
basis signals ¢;(t) and cy(t), over [T//2,T], one can retrieve the complex number my; = a, + ib,. In fact,
from (4,5) it follows that:
t)eg(t —T/2)dt

s =

\/E_b /T/2

Yeu (t —T/2)dt
\/Eb T/2 v

In practice, at the receiver one observes a noisy and filtered version of the reference signal, 7(¢), and of
the information-bearing signal ¢(¢). In our analysis we assume that the only distortion affecting the received

3In practice this translates into the fact that if the real Hilbert transformer introduces a delay of m samples, the reference signal
needs to be delayed by the same amount.
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signal is additive white Gaussian noise (AWGN). Note that different sample functions of filtered noise n(t)
corrupt the reference and information-bearing part of the signal. Namely, the inputs of the correlator A in
Fig. 2 are:

7(t —T/2) = \/Eycy(t —T)/2) = \/ETb[cw(t—T/Q) +n(t—T/2)], te[T/2,T], (10)
and:
i(t) = VEymy(t) = VEplasca(t — T/2) + byey(t — T/2) +n(t)],  t€[T/2,T], (11)

By using the corrupted chaotic reference ¢,(t) we produce an estimate of the orthogonal signal ¢,(t). In
particular, by indicating with 4 the Hilbert transform operator, it follows that:

&(t—T/2) = H[alt-1T/2)

Hcx(t —T/2) +n(t —T/2)]
eyt —T/2) +n'(t —T/2),

where we denoted: n/(t) = H [n(t)]. In the case of ideal Hilbert transform the statistics of the noise term n'
coincide with n, that is with AWGN. We assume this to hold true also when considering an approximation
by the Hilbert filter. This hypothesis is confirmed by our simulation results (see Sec. V-A).

The received information-bearing signal m(t) is correlated with the noisy versions of the chaotic basis
functions ¢,(t) and ¢,(t), as illustrated schematically in Fig. 2. The outputs of the correlators provide the
observation signals z, and z,, based on which a decision about the received symbol 5 is taken, once every T'
seconds. The decision boundaries for each signal constellation are shown in Fig. 3. Finally, the Symbol/Bit
converter reconstructs the sequence of received bits.

C. Observation Signals

The noise performance of a digital communication scheme is determined by the probability distribution of
the observation variables. For QCSK, if the time-varying channel varies slowly compared to the symbol rate,
from (10) and (11) it follows:

2q = /j [ Eycy(t —T/2) +n(t — T/Q)} [ Epascs(t —T/2) + V/Eybscy (t = T/2) +n(t)| dt,
/2

which keeping into account that c, and c, are orthonormal over [T'/2,T], reduces to:

T
e = asEy+/Fras / oot — T/2)n(t — T/2)dt
T/2
+ \/Ebb/ (6 —T/2)n(t —T/2) +\/E,/ o(t = T/2)n(t)dt (12)
4 /m n()n(t — T/2)dt

Note that by setting ‘as ==l ‘ and ‘bs = 0‘ the structure of expression (12) for the observation variable z,
coincides with the DCSK one, as reported for example in [24].

Similarly:

T
2 = / [\/E,cy(t —T/2) + 0 (t — T/2)] [ Eyascs(t —T/2) + /Eybscy(t — T/2) + n(t)] dt,

T/2
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from which:

T
o = boEy+/Fyas / eolt — T/2)n! (t — T/2)dt

T/2
+ VBbs /m (t—T/2)n (t—T/zdt+\/Eb/ (= T/2)n(t)dt (13)

+ /m n(t)n'(t — T/2)dt

In (12) and (13) the first term provides the desired coefficients as and by, respectively, and it is proportional
to the energy per bit Ej,. All the remaining terms are due to the noise on the channel. In particular, the second,
third and fourth terms depend on products of the channel noise and the chaotic basis functions. According
to [24] we refer to these terms as cross-products. Finally, the last term in (12) and (13) depends solely on the
channel noise. In particular, this term has zero mean value but it has a non-Gaussian distribution, and it can
be shown that its variance increases with the bit duration 7" [10]. For a detailed discussion and interpretation
of the above terms we refer the reader to [24].

We anticipate that, as a refinement of the preliminary results in [7], because of the different structure of the
observation variables the performance of QCSK in the presence of noise is in general slightly different from
DCSK. This is discussed in details in the next section.

V. QCSK NOISE PERFORMANCE

In this section we report about the performance of the proposed QCSK communication scheme in the
presence of additive white Gaussian noise. We consider here the discrete-time version of the QCSK scheme
shown in Fig. 2. For this analysis we selected the 3-adic Rényi map:

f(z) =Bz +1) mod2-1,

as an instance of chaotic system. For each symbol period T" a length- K vector x of chaotic iterates is generated.
Its mean value is then subtracted and the vector is normalized to ensure that the constraint Ej; = const is
satisfied. This vector represents the ¢, component of the chaotic signals basis. The orthonormal component
¢y is computed according to the FFT-based algorithm described in Sec. III-C.1. The basis signals ¢, and ¢,
are then multiplied by v/E, and used to form the reference and the information-bearing part of the QCSK
signal. The latter is obtained by combining the chaotic basis vectors according to the constellations shown in
Fig. 3.

A. Simulation Results

Fig. 4 shows a plot of the BER (bit error rate) versus Ej,/Ny, where Ej represents the energy per bit and
Ny is the (unilateral) noise power spectral density. The performance curves refer to the signal constellations
shown in Fig. 3, for K = 2,16, 64.

The performance curves refer to the signal constellations shown in Fig. 3, for K = 2,16, 64. Note that the
DCSK1 and DCSK2 versions exhibits the same BER performance and the same can be said about QCSK1
and QCSK2. Then, we can conclude that the hypothesis made in Sec. IV-B on the noise component n’ at the
output of the Hilbert filter is verified. In particular, this confirms that the distribution of n’ can be considered
Gaussian and coinciding with n.

The simulations have been carried out using MATLAB and verified with the simulation package Sys-
TEMVIEW.

B. Dependence on the Correlation Time

As pointed out in [24], [25], [26], the performance of transmitted-reference communication schemes (such as
DCSK and QCSK) depends on the correlation time K.* This property is confirmed by Fig. 4, which shows the

“With an abuse of notation we refer here to K as the correlation time, while it should be clear that K represents the length of
the chaotic vectors cg, ¢, and ms.
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BER performance of the QCSK and DCSK schemes for different correlation times K. As visible from Fig. 4,
the error probability increases as K is increased. Note also that for low values (K < 16) of the correlation
time DCSK performs better than QCSK, while for higher values of K, QCSK outperforms DCSK. This result
is explained in details in the next subsection.

C. Theoretical Analysis

The goal of this part of the work is to derive analytical expressions for the bit error rate of the QCSK
scheme. In particular, we develop formulas expressing the BER in terms of probabilities of variables which
are functions of standard Gaussian random variables. Then, by applying the central limit theorem [23] we find
approximate analytical expressions of the BER valid for sufficiently large K. The key result for our analysis is
expressed by Lemma 1 (in Sec. V-C.1), showing that the performance of the QCSK scheme does not depend
on the particular choice of the reference signal. We will present the analysis for the discrete-time case, which
can also be considered as a model of the continuous-time system, as previously mentioned.

C.1 BER Analytical Expressions

Let us assume that the reference signal consists of K chaotic samples, generated by a chaotic system with
frequency fs. The length of the information-bearing part is also K, resulting in a total of 2K samples per
symbol and T' = 2Kt,, where t; = 1/ f5. Correspondingly, by keeping into account that in QCSK two bits of
information are associated to every symbol, the energy per bit Ej is given by:

P (Zr +zm ) = 5 (IR + )

where (r1,...,7x) and (my,... ,mg) are the reference and information vectors, respectively. On the other
hand, AWGN noise with spectral density Ny translates into independent random Gaussian variables with
variance o2 being added to each sample, where 02 = Ny/(2t).

In this analysis we consider the constellation QCSK2 with the following symbol encoding:

Symbol | Bits | Reference | Message
0 (0,0) a c(+a+0b)
1 (0,1) a c(+a —b)
2 (1,0) a c(—a+ D)
3 (1,1) a c¢(—a —b)

where ¢ = 1//2. Since each sample is contaminated by AWGN, at the receiver we observe a+n = (a; +n;)K,
and m —l—{ = (m; + §l)l 1, where n; and ; are zero mean independent Gaussian random variables with
variance o2, The first bit is detected by correlating m + ¢ with a + 7. If the correlation result is larger than
zero then the decision is taken that the transmitted bit was “0”, otherwise “1”. The second bit is detected
by correlating m +§ with the Hilbert transform of a + 7. Here we assume that the Hilbert transform of a+n
is b+ 1, where 1’ is also a vector of independent random Gaussian variables with variance o?. The validity
of this assumption has been discussed in Sec. IV-B.

Lemma 1: Let us assume that the QCSK reference signal and the orthogonal signal used for the transmission
have always the same norm e (it follows that the energy per bit is kept constant). Then the bit error rate (or
probability of error) is equal to:

1
BERQCSK = PQCSK(E) |CL||2 + —a(a + b) + Uan + 0'277T§ < 0) . (14)

|

(f V2

where a and b are arbitrary vectors such that a’'b = 0, ||a|| = ||b|| = e, while  and £ are vectors of independent
standard (i.e. zero mean and unity variance) Gaussian random variables.



IEEE TRANS. CIRCUITS AND SYSTEMS—I, FEBRUARY 2001 9

Proof: In QCSK the error probability can be computed as

Pacsk(E) = 3 (P(By) + P(By))

where P(Ej;) is the error probability for the ith bit. The latter can be computed as:
3
P(E;) =Y P(Ej|s=j)P(s=j),
=0
where P(FE;|s =j) is the conditional error probability in the ith bit under condition that the symbol j was

transmitted, and P(s=j) is the probability of emitting the symbol j.
From the operation of the receiver it follows that:

P(Ey1|s=0) =P((a +n)" (c(a +b) + &) < 0), (15)
P(E|s=1) =P((a+n)"(c(a = b) +¢) <0), (16)
P(Ey|ls=2) =P((a +n)"(c(—a +b) +£) > 0), (17)
P(E\|s=3) =P((a+n)"(c(-a = b) +£) > 0), (18)
P(Es|s=0) =P((b+n)" (c(a +b) + £) < 0), (19)
P(Ea|s=1) =P((b+n)" (c(a —b) + &) > 0), (20)
P(By|s=2) =P((b+n)" (c(—a +b) + &) < 0), (21)
P(Ea|s=3) =P((b+n)" (c(—a = b) + &) > 0), (22)

where ¢ = 1/v/2. First let us observe that the probabilities (17), (18), (20), (22) are equal to (16), (15),
(21) and (19), respectively. This can be seen by multiplying the formulas inside the parentheses by —1 and
observing that the random vector —¢ has the same distribution as &.

From Lemma 3, which is proved in Appendix A, it follows that the distributions appearing in the equations
(15), (16), (19) and (21) are all equal. Hence, the probabilities (15)—(22) are equal. They also do not depend
on the particular choice of ¢ and b, as long as a and b are orthogonal and have constant norm. Hence

Pocsk(E) = P(Ei|s=0) = P((a +1)" (c(a +b) +¢) <0)
= P((a 4 on')! (c(a + b) + 0€’) < 0)
= P(cllal* + cofa+ 1)y +oa”¢ + o™ ¢ <0)
where 7' and £ are vectors of independent standard Gaussian variables. [ |
Now let us express the error probability in terms of the energy per bit Ej, = 2t4|a||?/2 = t||a||? and the
noise spectral density Ny = 2t,02. Since the BER performance does not depend on the particular choice of a

and b, let us choose: a = (||a||,0,...,0) and b = (0, ||a||,0...,0). The formula for the QCSK error probability
reads then:

K
BERqcsk = Pqesk(E) = P <\/ %(m + 12 + V26 + Zniéi < _\6%> (23)
=1

where 7, & are independent standard Gaussian variables.
Remark 1: Similarly for DCSK one can show that the error probability does not depend on the reference
vector a and is equal to:

Ppcsk(E) = P (|lal|* + oa” (n+ &) + o*n" ¢ < 0),

where again 7;, & are independent Gaussian variables with zero mean and unity variance. By taking into
account that for the DCSK scheme Ej, = 2t4||a||?> and choosing a = (||al[,0, ... ,0) we obtain:

K
E E
BERpcsk = Pocsk(E) = P (\/ _Nz (& 4+m)+ E ni&i < _FZ> : (24)
i—1
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where 7;, & are independent standard Gaussian random variables.

From the formulas (23) and (24) it is clear that the performance of both methods degrades with increasing K.
In fact, for larger K the only modification is the larger number of terms of the form r;¢;, which increase the
error probability. These formulas can be used for computation of the BER curves for the QCSK and DCSK
techniques. Since we know the analytical expressions for the densities of 7; and &; we can evaluate the density
of the variables \/ﬁ:g(m +772+\/§§1)+Zfi1 n;&; and % (&1 +7]1)+Z£1 n;&; in terms of definite integrals. For
the computation of probabilities (23) and (24) one may use numerical integration methods. In this work these
probabilities have been estimated numerically by considering an ensemble of vectors n1,... ,nx, &1,.-- €k,
according to the normal distribution N (0, 1), and applying the definition of probability as relative frequency
associated with an observed event [9]. This approach is very accurate for moderate values of Ej,/Njy. Note
that for DCSK there exists an exact expression for bit error rate [24], [25], which gives results coinciding with
those obtained using the above procedure.

In Fig. 5 we present a comparison of the theoretical predictions with the simulation results for a QCSK
system based on the Renyi map. One can clearly see the perfect agreement. Fig. 6 shows the theoretical
predictions for the BER, comparing QCSK versus DCSK. For low values of Ej/Njy, QCSK exhibits better
BER performance than DCSK. For higher Ej /Ny and small K, DCSK has lower error probability. For K = 16
the BER curves are close to each other, while for larger K QCSK performs better than DCSK in the whole
range of E,/Np.

C.2 Approximation Using the Central Limit Theorem

The central limit theorem [23] states that if {y;}}¥, are statistically independent zero mean random variables
with the same probability density function and variance o2, and z = \/_IN Ef\; 1 Yi» then the distribution of

z approaches Gaussian distribution with zero mean and variance 0% as N goes to infinity. We now use this
result to develop approximate analytical expressions for the BER in QCSK (and DCSK).
In order to apply the central limit theorem we assume that K is even and we choose vectors
[lall

a="N0 1., b=
VK )

|a||(1,—1,... J1,-1).

B

From Lemma 1 it follows that
1 1 K K K
Pocsk(E) =P %Haﬂz—i—ﬁa Z 2ni+025i+0227]i§i <0]. (25)
i=1,i—odd i=1 i=1

Dividing the expression within the parentheses by o2 and taking into account that ||a||/oc = \/2FE,/Ng we
obtain:

K
2E, V2B,
Pocsk(B) =P | =0 (Va2 : & il -

Let us define for i =1,... ,K/2

2E,
Yi = (V202i—1 + Eai1 + €2i) + M2im1€2i—1 + M2ifoi
\ KN,

5 K2
1=

and
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y; are zero mean random variables with the same distribution and variance: 02 =2+ 8Ey/(K Ny). 1t follows

that:
K V2E, 2F),
P, E)=P|/—=2z< — =P - .
qosk (£) (\/ 27 < TN, ) <Z < KN0>

For large K, the random variable z has approximately Gaussian distribution with variance oy, thus the
probability of error can be computed as

-1/2
1 2F, 1 Ny Ng
P, E)=-efc| ———— | = —erf 4— + K- 2
QCSK( ) 281‘(3 (KN(”/EO@) 281‘(3 (( Eb + Eg ) ( 6)

where erfc(-) is the complementary error function [23].
For DCSK this method gives the following expression:

1 N, N2\ TL/2
PDCSK(E) = 5 erfc <<4fz + QKE—g> . (27)
b

These approximations are valid for large correlation times K. Since the erfc is a strictly decreasing function
it follows that for large K the QCSK method is better than DCSK in terms of error probability.

Fig. 6 shows the BER curves obtained by plotting formulas (26) and (27), for K = 2,16,64. As it can be
seen in Fig. 6(c), the approximate results based on the central limit theorem and the exact curves tend to
get closer for K = 64. For smaller values of K the error due to the assumption that the distribution of z is
Gaussian causes unacceptable differences (see Fig. 6(b) and especially Fig. 6(a)). This fact is demonstrated
by Fig. 7 showing that the distribution of Zle yi, for small k, is far from Gaussian.

D. QCSK versus DCSK

Summarizing, QCSK may be considered equivalent to two DCSK systems: the first using the reference signal
c.(t) and the second using the orthogonal signal c,(t) which is restored at the receiver from the reference part
of the transmitted signal. The advantage of the proposed QCSK scheme is that there is no need to send
the orthogonal signal over the channel as its estimate can be reproduced from the received reference signal.
The price is the higher complexity as QCSK requires the generation of the complementary signal in both the
transmitter and the receiver. The BER performances of the DCSK and QCSK schemes are similar but QCSK
has double data rate. In fact the QCSK symbol consists of two bits as opposed to one bit in DCSK. Since
the two signals occupy the same bandwidth it follows that QCSK has higher spectral efficiency with respect
to DCSK.

VI. EXTENSION TO M-ARY CONSTELLATIONS

In general QCSK may be extended to M-symbol constellations. For example, this can be obtained by
considering the set of complex numbers: mg = ¢2st/M g — 1 ... M. This choice gives a chaos-based version
of M-ary PSK (Phase Shift Keying). Moreover, if the constellation signals are not restricted to lie on a circle
one can design a chaotic version of QAM (Quadrature Amplitude Modulation) [9]. In this case however the
conditions Ej = const is no longer satisfied.

VII. CONCLUSIONS

In this paper we have proposed a multilevel chaos-based modulation scheme called QCSK (Quadrature
Chaos Shift Keying). The QCSK scheme is derived from DCSK and exhibits similar BER performance as
DCSK but double data rate for a given bandwidth (or half bandwidth for given data rate), resulting in
an increased spectral efficiency. The drawback consists in an increased complexity of both transmitter and
receiver.
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IX. APPENDIX A

In this Appendix we prove two lemmas, which are necessary for showing that the performance of the QCSK
modulation method does not depend on the particular choice of the orthogonal signals a and b, as long as
llall = [1b]] = const.

The following lemma shows that a linear transformation defined by an orthonormal matrix transforms a
vector of independent Gaussian variables into a vector of random variables with the same properties.

Lemma 2: Let us assume that n = (11,... ,7,) is a vector of independent Gaussian variables with zero mean
and variance 02. Let T be an orthonormal matrix, i.e. 7! = 77 and rows of 7 have norm 1 (> Tfj =1
fori =1,...,n). Let ¥ = Tn. Then 7’ is a vector of independent Gaussian variables with zero mean and
variance o2.

Proof: 1t is well known that a linear combination z = a1z + -+ + a,z, of zero mean independent
Gaussian random variables z;, each with variance o2 is itself a zero mean Gaussian variable with variance

0?2 = (a2 +---+a2)o?. It follows that n} = > i=i Tijnj is a zero mean random Gaussian variable with variance
n
07272 = ZT%UQ = o2
j=i
From the assumptions it follows that the joint probability density function of 1 ... , 7z is equal to

n 2
1 o
Py (@1, ) = 1l exp (——202> .
1=

We will show independence of 7} using the theorem on reversible transformations of random vectors [27].
According to this theorem the joint density function of ' = f(n) (where f is reversible, g = f~!) can be
computed as

pn’l...,n’L(/B) = |Dg(ﬂ)|p7n ...,T]L(Ql(ﬁ)? ce 7971(/6))7
where B = (517"' 7571)

In our case ' = f(n) = Tn, n = g(n') = T'n, the Jacobian of ¢ is constant and its determinant is
|Dg(B)] = |T"| = 1.

p"'w):iﬁl L () 2 L ((DE) L (LI

902 (v270) 202 (V2mo)n 20°
1 ||/3||2> 71 ( B? ) -
= exp | — = exp | — = (B).
( 271_0_)71 p < 20_2 ZIZII 271_0_ p 20_2 leIlpﬂz (ﬂl)
Since the joint density function of ' = (1], 75, ... ,n.,) can be factorized in the form shown above it follows
that the random variables 7. are independent. |

The next lemma states that the distributions of random variables appearing in the formulas (15)-(22) do
not depend on a and b, as long as a and b are orthogonal and their Euclidean norms are equal and fixed.

Lemma 3: Let n = (n1,... ,n,) and &€ = (&1, ... , &) be vectors of independent Gaussian variables with zero
mean and variance o2. Let n > 2, a = (a1,... ,a,) and b = (by,... ,b,). Let us assume that ||a|| = ||b|| is
constant and a’'b = 0. Then the random variable defined as

2= (a+n)"((a+0)/V2+¢) (28)
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has a distribution which does not depend on a and b.
Proof: Let ¢ = 1/y/2. The distribution under consideration can be written as follows:

z=dllall® +cla+b)"n+a¢ +7"¢
We skip the constant term c||a||?. We show that the following distributions are the same

z=cla+b)'n+a" ¢ +n"¢, (29)
z =c|la|(n +12) + [[allé&; + "¢ (30)
The first distribution is obtained using arbitrary vectors a and b, while the second is obtained for a =

(lla]],0,...,0), b = (0,]]a||,0,...,0). First we split the random vector ¢ into the sum of two independent
random vectors, with components being random independent Gaussian variables with the same variance as £.

E=—(+8 =c(f+9).

1
V2
After this substitution z can be rewritten as

z=cla"n+b"n) +ca”(E+E+en"(E+E) =clan+b"n+a"E+adTE+nTE+nTE). (31)

Let e; = %+ and ey = L. Let us choose vectors es, ... , e, in such a way that e1,... ,e, is an orthonormal
lal] [[5]] v e

base in R”. Also, we define the square matrix T = (e1, €2, ... e,)T. We now define ' =T, &' = T¢, & = TE.
Since T' is an orthonormal matrix it follows from Lemma 2 that 1/, £, £ are vectors of independent random
variables with same distribution as 7, ¢, €.

We have the following relations:

n=T", &=1"¢, £=1"¢,
1Ty = a"ein), = [|al|n},

b'n = llallny, "€ =1lall&, o"&=llallé],
n' €= (") 118 =TT = TE,
n'E=n"¢.

a'n=a

from which we obtain finally
ot F Tz T & T
z = c(llallny + llallny + llallg’ + llal|g" + 7" & + 0" &) = cllall(m + nz) + llall&y + 7" &

where & = ¢(€' 4+ €') is a vector of independent random Gaussian variables with variance o2. Thus we have
shown that the distributions (29) and (30) are the same. [ ]
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Fig. 1. Example of chaotic waveform z(t) and corresponding orthogonal signal y(t), computed by taking the Hilbert
transform of z(t) over the interval [0, 10].
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Fig. 2. Simplified block diagram of the QCSK scheme. Please refer to the text for a detailed description of its operation
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Fig. 3. Chaotic constellations. Two-level signaling: (a) DCSK1 and (b) DSCK2. Four-level signaling: (¢) QCSK1 and
(d) QCSK2. The dashed lines represent the decision boundaries.
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Fig. 4. Comparison of BER performance: QCSK versus DCSK. (a) K = 2, (b) K = 16, (c) K = 64. The results for

QCSK and DCSK are plotted with solid and dashed lines, respectively. Note that for sufficiently large values of
K (> 16) QCSK outperforms DCSK.
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Fig. 5. Bit error rate for the QCSK modulation (version QCSK2). Comparison of simulation results (S) and theoretical
predictions (T) for K = 2,16, 64.
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Fig. 6. BER plots for QCSK and DCSK obtained using the exact formulas (23) and (24) and the approximate formulas
derived using the central limit theorem for: (a) K = 2, (b) K = 16, (¢) K = 64. For small K the DCSK scheme
shows better performance, for K = 16 the performance is approximately the same, while for larger K the QCSK
scheme has smaller error probability in the whole range of Ej/Ny.
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