
IEEE TRANS. CIRCUITS AND SYSTEMS|I, FEBRUARY 2001 0

Quadrature Chaos Shift Keying:

Theory and Performan
e Analysis

Zbigniew Galias Member IEEE,

Gian Mario Maggio, Member IEEE,

Abstra
t

In this paper we propose a multilevel version of the Di�erential Chaos Shift Keying (DCSK) tele
ommuni
ation

system. The s
heme, whi
h we 
all Quadrature Chaos Shift Keying (QCSK), is based upon the generation of an

orthogonal basis of 
haoti
 fun
tions. QCSK is 
hara
terized by an in
reased data rate with respe
t to DCSK, with the

same bandwidth o

upation, resulting in an improved spe
tral eÆ
ien
y. The pri
e for the performan
e enhan
ement is

the in
reased 
omplexity of both the transmitter and the re
eiver.
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I. Introdu
tion

In the last few years a great resear
h e�ort has been devoted towards the development of eÆ
ient 
haos-based

modulation te
hniques [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, [7℄. Among the several systems proposed, one of the best bit error

rate (BER) performan
es has been a
hieved by the DCSK (Di�erential Chaos Shift Keying) s
heme [4℄ and

its variation utilizing frequen
y modulation, that is FM-DCSK [5℄. These s
hemes are based upon wideband


haoti
 signals whi
h under severe multipath propagation exhibit a better performan
e than 
onventional

systems based on sinusoidal 
arriers [8℄. DCSK is a transmitted-referen
e digital signaling s
heme [9℄. For

ea
h symbol period, the DCSK signal 
onsists of a pie
e of 
haoti
 waveform, followed by a non-inverted or

inverted 
opy of itself, depending on the binary symbol (\0" or \1") to be transmitted. In [10℄ the �rst and

the se
ond part of the DCSK signal are 
alled referen
e and information-bearing 
hip, respe
tively.

Re
ently, several di�erent methods have been proposed in the literature to in
rease the data rate of

DCSK [11℄, [12℄. The simplest option 
onsists of s
aling the information and/or the referen
e parts of the

signal. For example the information-bearing part may be multiplied by a number depending on the symbol

transmitted. A more sophisti
ated approa
h uses two 
haoti
 basis fun
tions and divides the symbol period

into four time slots in order to obtain a multilevel s
heme [11℄. These methods, though, a
hieve higher data

rate by giving up some of the BER performan
e.

In this work we introdu
e a novel multilevel 
haos-based 
ommuni
ation s
heme 
alled QCSK (Quadrature

Chaos Shift Keying) 
hara
terized by the same bandwidth o

upation and similar BER performan
e as DCSK,

but higher data rate.

QCSK may be 
onsidered as the 
haoti
 
ounterpart of QPSK (Quadrature Phase Shift Keying) in 
on-

ventional digital 
ommuni
ations. We re
all [9℄ that QPSK exhibits the same BER performan
e as BPSK

(Binary Phase Shift Keying) with the same bandwidth o

upation, but double data rate. This is a
hieved

by employing a quadrature pair of sinusoidal 
arriers to generate an orthogonal signal basis. Sin
e the basis


omponents are orthogonal, they 
an be used to modulate information separately as for two BPSK systems

sharing the same 
hannel without (ideally) interfering with ea
h other. Orthogonal basis fun
tions, usually

sinusoids, are used in digital 
ommuni
ations to generate large signal 
onstellations in order to in
rease the
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spe
tral eÆ
ien
y. Typi
al examples are M -ary PSK (Phase Shift Keying) where the phase of the transmit-

ted signal is varied among M dis
rete values and QAM (Quadrature Amplitude Modulation) where both the

amplitude and the phase of the referen
e sinusoid are varied [13℄.

The basi
 idea underlying the QCSK s
heme is the generation of 
haoti
 signals whi
h are orthogonal

in a spe
i�ed time interval. This allows the 
reation of a basis of 
haoti
 fun
tions from whi
h arbitrary


onstellations of 
haoti
 signals 
an be 
onstru
ted. For instan
e, in QCSK a linear 
ombination of two 
haoti


basis fun
tions is used to en
ode four symbols. The key point for exploiting this idea in a 
ommuni
ation

system is that one must be able to generate the 
haoti
 basis fun
tions starting from a single 
haoti
 signal.

The same 
on
ept holds for 
onventional digital 
ommuni
ation s
hemes su
h as QPSK, where the quadrature


omponent 
an be obtained from the in phase one by means of a simple phase shifter.

The paper is organized as follows. In Se
. II we re
all the operation prin
iple of DCSK 
omparing it to

BPSK. Se
. III deals with the generation of a basis of 
haoti
 signals. In Se
. IV we des
ribe in details the

operation of the proposed QCSK s
heme. Then, in Se
. V we present the theoreti
al and simulation results

for the performan
e of QCSK in the presen
e of noise. Finally, in Se
. VI we dis
uss the general 
ase of


haos-based multilevel signaling s
hemes.

II. Differential Chaos Shift Keying

In DCSK two 
haoti
 sample fun
tions are sent for ea
h symbol period, 
orresponding to one bit of infor-

mation. The �rst fun
tion is used as a referen
e, while the se
ond represents the information-bearing part of

the signal. On the re
eiver side one observes a noisy version of the transmitted signal. The digital information

is extra
ted by means of di�erentially 
oherent demodulation [10℄. Namely, at the re
eiver the 
orrelation be-

tween the two re
eived 
haoti
 fun
tions is 
omputed. The output of the 
orrelator is then sampled a

ording

to the symbol time and a de
ision on the re
eived symbol is taken.

A. DCSK versus BPSK

Di�erential Chaos Shift Keying is in some sense similar to the BPSK modulation s
heme [9℄. In BPSK

one transmits a sin(�) fun
tion signal or its inverted version depending on the bit of information. In prin
iple

DCSK does exa
tly the same ex
ept that the 
haoti
 signal used for sending the information is di�erent for

ea
h bit, thus one needs to send the 
orresponding referen
e signal as well in order to enable the dete
tion at

the re
eiver.

One of the modi�
ations of BPSK is the QPSK s
heme, whi
h exhibits the same BER performan
e as

BPSK, but is more eÆ
ient by having a double data rate. Basi
ally, in QPSK a two-bit symbol is en
oded

as a linear 
ombination of two orthogonal waveforms (sin and 
os). In the rest of this paper we des
ribe how

this idea 
an be applied for in
reasing the data rate of DCSK.

III. Orthogonal Chaoti
 Signals

The �rst step for introdu
ing QCSK is the generation of a (
haoti
) signal orthogonal to a given 
haoti


referen
e signal in a spe
i�ed time interval. Typi
ally, two independent 
haoti
 signals 


1

(t) and 


2

(t) (or even

di�erent segments of the same 
haoti
 waveform) exhibit a very low 
ross-
orrelation (resp. auto-
orrelation)

and in that sense they might be 
onsidered approximately orthogonal over a suÆ
iently long time interval [0; � ℄:

Z

�

0




1

(t)


2

(t)dt � 0:

In order to produ
e an orthogonal basis fun
tion useful for 
ommuni
ation purposes we are interested in

the generation of a 
haoti
 signal y exa
tly orthogonal to a referen
e 
haoti
 signal x, and whi
h 
ould be

generated starting from x. This problem is the subje
t of the next subse
tion.
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A. Complementary Signal

Let x(t) be a 
haoti
 referen
e signal de�ned for t 2 [0; � ℄. Let us assume that the signal x has zero mean

value

1

and that in the interval [0; � ℄ it admits the following Fourier expansion (with f

0

= 0):

x(t) =

1

X

k=1

f

k

sin(k!t+ '

k

); (1)

where ! = 2�=� . Correspondingly, we denote by P

x

the average power of x(t) in the time interval [0; � ℄:

P

x

=

1

�

Z

�

0

x

2

(t)dt =

1

2

1

X

k=1

f

2

k

: (2)

We de�ne the 
omplementary signal y(t), with t 2 [0; � ℄, as the signal obtained by 
hanging the phase of ea
h

Fourier frequen
y 
omponent by �=2, namely:

y(t) =

1

X

k=1

f

k

sin(k!t+ '

k

� �=2): (3)

The signals x(t) and y(t) are orthogonal in the interval I

�

= [0; � ℄ and have the same power, that is:

x?y ()

Z

�

0

x(t)y(t)dt = 0; (4)

P

x

= P

y

()

1

�

Z

�

0

x

2

(t)dt =

1

�

Z

�

0

y

2

(t)dt: (5)

The above properties follow from:

1

�

Z

�

0

f

k

sin(k!t+ '

k

� �)f

m

sin(m!t+ '

m

� �)dt ==

�

1

2

f

2

k


os(�+ �) for k = m;

0 for k 6= m:

(6)

An example of a 
haoti
 signal x and the 
orresponding orthogonal signal y is shown in Fig. 1.

B. Relationship with Hilbert Transform

Referring to the de�nition (3) of the 
omplementary signal y, we observe that by extending x(t) and y(t)

to periodi
 signals with period � , y(t) represents the Hilbert transform of x(t). We re
all that the Hilbert

transform of a real signal is obtained by introdu
ing a �=2 phase shift in every frequen
y 
omponent. This

property is well known and exploited for example in the 
ontext of amplitude modulation (AM) for obtaining

a single (suppressed-
arrier) sideband (SSB) signal [9℄. Note also that the Hilbert transform preserves the

spe
tral properties of the signal; hen
e we 
an 
on
lude that the signals x and y have the same bandwidth

o

upation.

C. Pra
ti
al Algorithms

So far, several methods have been developed to design �nite impulse response (FIR) and in�nite impulse

response (IIR) digital Hilbert transformers su
h as the Remez ex
hange algorithm [14℄, eigen�lter method [15℄,

and weighted least squares method [16℄. Moreover, there are several methods for implementing the Hilbert

transformer, in
luding swit
hed-
apa
itor implementation [17℄, neural network [18℄, and multiplierless trian-

gular array realization [19℄. Typi
ally, these methods provide only an approximation of the Hilbert transform,

as the ideal Hilbert �lter impulse response extends in�nitely in both dire
tions. However, in this work rather

than produ
ing the ideal Hilbert transform, we are interested in generating the 
omplementary signal y (given

x) su
h that the orthogonality 
ondition (4) is exa
tly satis�ed over a given time interval.

We present here three methods, two of whi
h are suitable for dis
rete-time signals (C.1 and C.2) and one

for 
ontinuous-time signals (C.3).

1

This assumption simply implies that the DC value of the referen
e signal x(t) is �ltered out.
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C.1 Frequen
y Domain Approa
h

Given a length-K 
haoti
 sequen
e x = fx

j

g

K

j=1

we 
an generate the 
omplementary signal y = fy

j

g

K

j=1

a

ording to the following pro
edure, in analogy with the AM-SSB modulation [20℄.

1. Subtra
t the mean value from the input sequen
e (and if ne
essary zero pad su
h that K = 2

n

):

x

0

= x� x:

2. Cal
ulate the fast Fourier transform (FFT):

x

f

= F [x

0

℄ :

3. Create a ve
tor h whose elements h(j) have the values

� 1 for j = 1; (K=2) + 1,

� 2 for j = 2; 3; : : : ; (K=2),

� 0 for j = (K=2) + 2; : : : ;K,

and 
al
ulate x

h

as the element-wise produ
t of h and x

f

(this operation 
orresponds to eliminate the FFT


oeÆ
ients asso
iated with negative frequen
ies, preserving the signal energy);

4. Take the inverse FFT:

y = F

�1

[x

h

℄ :

In pra
ti
e, the algorithm des
ribed 
an be implemented by means of a DSP (digital signal pro
essor) unit.

C.2 Time Domain Approa
h

Another viable method to 
ompute the Hilbert transform of a given dis
rete-time signal x is to design a

FIR (Finite Impulse Response) �lter approximation to the Hilbert transform operator. An FIR �lter 
an be

designed by appropriately windowing the ideal impulse response [21℄:

h(k) =

(

2

�

sin

2

(�k=2)

k

for k 6= 0;

0 for k = 0:

(7)

Note that Eq. (7) des
ribes a non
ausal �lter, whi
h means that in pra
ti
e a delay m is in the �lter response.

Namely, the orthogonal ve
tor y 
an be generated by 
onvolution of x with h:

y(k) =

m

X

j=�m

x(k + j)h(j):

Of 
ourse, due to the �nite number of taps, the FIR implementation provides an approximation of the Hilbert

transform. For a dis
ussion of the �lter length sele
tion refer to [21℄.

C.3 Allpass Filters

In the 
ontinuous-time domain the Hilbert transform operation may be realized by an allpass �lter with

unity gain and phase response equal to �=2 over a 
ertain frequen
y range [22℄. Typi
ally the ideal response

is approximated by means of ellipti
al �lters. However, in pra
ti
e it is hard to obtain the desired response

over a suÆ
iently wide bandwidth. In addition, as noted above the ideal Hilbert transform �lter is non
ausal.

In the 
ontinuous-time implementation, though, adding a delay to make the �lter 
ausal also adds a 
onstant

phase delay. This results in a linear phase 
omponent whi
h is an undesirable e�e
t.

D. Chaoti
 Signal Constellations

The main advantage of produ
ing an orthogonal basis of 
haoti
 fun
tions [x(t); y(t)℄ is that large signal

sets 
an be generated, resulting in high spe
tral eÆ
ien
y. Referring to (2), an orthonormal basis of 
haoti


sample fun
tions over the interval I

�

= [0; � ℄ 
an be de�ned as follows:

C � [


x

(t); 


y

(t)℄ =

�

1

p

E

�

x(t);

1

p

E

�

y(t)

�

:
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Chaoti
 signal 
onstellations

s m

s

= a

s

+ ib

s

m

s

(t)

s=0 1 +


x

(t)

DCSK1

s=1 �1 �


x

(t)

s=0 i +


y

(t)

DCSK2

s=1 �i �


y

(t)

s=0 1 +


x

(t)

s=1 i +


y

(t)

QCSK1

s=2 �i �


y

(t)

s=3 �1 �


x

(t)

s=0 (+1 + i)=

p

2 (+


x

(t) + 


y

(t))=

p

2

s=1 (�1 + i)=

p

2 (�


x

(t) + 


y

(t))=

p

2

QCSK2

s=2 (+1� i)=

p

2 (+


x

(t)� 


y

(t))=

p

2

s=3 (�1� i)=

p

2 (�


x

(t)� 


y

(t))=

p

2

TABLE I

Chaoti
 signal 
onstellations and 
orresponding signals for the 
ases (a), (b), (
), (d) of Fig. 3.

where: E

�

= P

x

� , is the energy asso
iated with x (and y) over I

�

, su
h that:

Z

�

0




2

x

(t)dt =

Z

�

0




2

y

(t)dt = 1; (8)

(and of 
ourse:

R

�

0




x

(t)


y

(t)dt = 0). The orthonormality 
ondition (8) implies that the energy asso
iated

with the signals 


x

(t) and 


y

(t) is 
onstant for every interval I

�

and in parti
ular equals unity.

A 
onstellation of 
haoti
 signals 
an then be generated as linear 
ombinations of the basis signal 


x

and




y

, that is:

m

s

(t) = a

s




x

(t) + b

s




y

(t);

where the index s identi�es the symbol in the signal spa
e. Equivalently, the symbol s 
an be represented as

a 
omplex number

2

:

m

s

= a

s

+ ib

s

:

In this work we 
onsider the four signal 
onstellations shown in Fig. 3, whose analyti
al representations

are reported in Table I. Constellations (a) and (b) are two-level signaling, the �rst one being the ordinary

binary DCSK. The 
ase (b) may have the advantage|with respe
t to 
onventional DCSK|that the signal

transmitted is never repeated, thus resulting possibly in a low probability of inter
eption (LPI). On the other

hand, Fig. 3(
,d) show the signal 
onstellations 
orresponding to two versions of a four-level QCSK 
haoti


signaling s
heme. Finally, one 
an easily verify that for all 
ases 
onsidered:

Z

�

0

m

2

s

(t)dt = 1: (9)

i.e. the information signal m

s

is also 
hara
terized by 
onstant energy, in parti
ular equal to unity.

2

In the rest of the paper it should be 
lear from the 
ontext whether we are referring to the fun
tion of time m

s

(t) or to the


orresponding 
omplex number m

s

.
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IV. Quadrature Chaos Shift Keying

The aim of this se
tion is to illustrate the QCSK modulation s
heme, whose simpli�ed blo
k diagram

is shown in Fig. 2. For the sake of simpli
ity we 
onsider here a baseband system. It is 
lear, though,

that if the s
heme is to be employed for instan
e for wireless 
ommuni
ations a modulator to generate the


orresponding RF passband signal is needed. Furthermore, we assume that the des
ription of the QCSK

s
heme in the 
ontinuous-time domain admits an equivalent dis
rete-time representation. A

ording to the

sampling theorem [9℄ it suÆ
es that the sampling rate f

s

� 2B, where B is the max bandwidth o

upation of

the 
orresponding 
ontinuous-time signals. With these notations, a time interval �t maps in the dis
rete-time

domain to �k = �t=t

s

, where t

s

= 1=f

s

is the sampling time interval.

A. QCSK Modulation

In QCSK, similarly to DCSK, to send the symbol s we transmit for half symbol period the 
haoti
 referen
e


hip r(t) =

p

E

b




x

(t) and in the se
ond half the information-bearing 
hip i(t) =

p

E

b

m

s

(t), where s denotes

the symbol to be transmitted and E

b

is the energy per bit. From the orthonormality 
ondition (8) and from (9)

it follows E

b

= 
onst:, that is the energy per bit is 
onstant for every transmitted bit. In pra
ti
e, the same

result may be a
hieved by using the 
haoti
 signals x and y to drive a frequen
y modulator, as it is done in

FM-DCSK [5℄.

In formulae, by denoting with T = 2� the symbol period, the QCSK transmitted signal 
an be expressed

as:

S

QCSK

(t) =

�

p

E

b




x

(t) for 0 � t < T=2;

p

E

b

(a

s




x

(t� T=2) + b

s




y

(t� T=2)) for T=2 � t < T;

where for QCSK: s = 0; 1; 2; 3.

Referring to the blo
k diagram in Fig. 2, the QCSK modulator 
onsists of a 
haoti
 generator produ
ing the

signal 


x

, for ea
h time interval [0; T=2℄. The 
orresponding orthogonal signal 


y

is generated by the Hilbert

�lter, that for simpli
ity we assume to introdu
e no extra-delay.

3

The en
oder produ
es a linear 
ombination

of the signals 


x

and 


y

, depending on the symbol s to be transmitted. The latter information is provided

by the Bit/Symbol 
onverter, mapping ea
h input bit pair to the 
orresponding symbol. As a result two

bits of information are transmitted for ea
h symbol period T . Then, a two-
hannel analog multiplexer, with

swit
hing time equal to T=2, is used to form the QCSK signal. Note that, although not expli
itly represented

in Fig. 2, the QCSK s
heme must in
lude a lowpass bandlimiting �lter limiting the bandwidth of the signal

to be transmitted over the 
hannel. It is indeed 
lear that every physi
al 
hannel possesses �nite bandwidth.

B. QCSK Demodulation

The QCSK signal 
an be demodulated by using di�erentially 
oherent dete
tion [10℄. In this work we will

assume symbol time syn
hronization, that is the re
eiver \knows" the beginning of ea
h symbol frame (of du-

ration T ) for starting the 
orrelation pro
ess. This is a standard assumption when analyzing a 
ommuni
ation

system [23℄.

Theoreti
ally, by 
orrelating the information-bearing part of the signal i(t) =

p

E

b

m

s

(t) with the 
haoti


basis signals 


x

(t) and 


y

(t), over [T=2; T ℄, one 
an retrieve the 
omplex number m

s

= a

s

+ ib

s

. In fa
t,

from (4,5) it follows that:

a

s

=

1

p

E

b

Z

T

T=2

m

s

(t)


x

(t� T=2)dt;

b

s

=

1

p

E

b

Z

T

T=2

m

s

(t)


y

(t� T=2)dt:

In pra
ti
e, at the re
eiver one observes a noisy and �ltered version of the referen
e signal, ~r(t), and of

the information-bearing signal

~

i(t). In our analysis we assume that the only distortion a�e
ting the re
eived

3

In pra
ti
e this translates into the fa
t that if the real Hilbert transformer introdu
es a delay of m samples, the referen
e signal

needs to be delayed by the same amount.
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signal is additive white Gaussian noise (AWGN). Note that di�erent sample fun
tions of �ltered noise n(t)


orrupt the referen
e and information-bearing part of the signal. Namely, the inputs of the 
orrelator A in

Fig. 2 are:

~r(t� T=2) =

p

E

b

~


x

(t� T=2) =

p

E

b

[


x

(t� T=2) + n(t� T=2)℄; t 2 [T=2; T ℄; (10)

and:

~

i(t) =

p

E

b

~m

s

(t) =

p

E

b

[a

s




x

(t� T=2) + b

s




y

(t� T=2) + n(t)℄; t 2 [T=2; T ℄; (11)

By using the 
orrupted 
haoti
 referen
e ~


x

(t) we produ
e an estimate of the orthogonal signal ~


y

(t). In

parti
ular, by indi
ating with H the Hilbert transform operator, it follows that:

~


y

(t� T=2) = H [~


x

(t� T=2)℄

= H [


x

(t� T=2) + n(t� T=2)℄

= 


y

(t� T=2) + n

0

(t� T=2);

where we denoted: n

0

(t) = H [n(t)℄. In the 
ase of ideal Hilbert transform the statisti
s of the noise term n

0


oin
ide with n, that is with AWGN. We assume this to hold true also when 
onsidering an approximation

by the Hilbert �lter. This hypothesis is 
on�rmed by our simulation results (see Se
. V-A).

The re
eived information-bearing signal ~m

s

(t) is 
orrelated with the noisy versions of the 
haoti
 basis

fun
tions ~


x

(t) and ~


y

(t), as illustrated s
hemati
ally in Fig. 2. The outputs of the 
orrelators provide the

observation signals z

a

and z

b

, based on whi
h a de
ision about the re
eived symbol ~s is taken, on
e every T

se
onds. The de
ision boundaries for ea
h signal 
onstellation are shown in Fig. 3. Finally, the Symbol/Bit


onverter re
onstru
ts the sequen
e of re
eived bits.

C. Observation Signals

The noise performan
e of a digital 
ommuni
ation s
heme is determined by the probability distribution of

the observation variables. For QCSK, if the time-varying 
hannel varies slowly 
ompared to the symbol rate,

from (10) and (11) it follows:

z

a

=

Z

T

T=2

h

p

E

b




x

(t� T=2) + n(t� T=2)

i h

p

E

b

a

s




x

(t� T=2) +

p

E

b

b

s




y

(t� T=2) + n(t)

i

dt;

whi
h keeping into a

ount that 


x

and 


y

are orthonormal over [T=2; T ℄, redu
es to:

z

a

= a

s

E

b

+

p

E

b

a

s

Z

T

T=2




x

(t� T=2)n(t� T=2)dt

+

p

E

b

b

s

Z

T

T=2




y

(t� T=2)n(t� T=2) +

p

E

b

Z

T

T=2




x

(t� T=2)n(t)dt

+

Z

T

T=2

n(t)n(t� T=2)dt:

(12)

Note that by setting a

s

= �1 and b

s

= 0 the stru
ture of expression (12) for the observation variable z

a


oin
ides with the DCSK one, as reported for example in [24℄.

Similarly:

z

b

=

Z

T

T=2

h

p

E

b




y

(t� T=2) + n

0

(t� T=2)

i h

p

E

b

a

s




x

(t� T=2) +

p

E

b

b

s




y

(t� T=2) + n(t)

i

dt;
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from whi
h:

z

b

= b

s

E

b

+

p

E

b

a

s

Z

T

T=2




x

(t� T=2)n

0

(t� T=2)dt

+

p

E

b

b

s

Z

T

T=2




y

(t� T=2)n

0

(t� T=2)dt +

p

E

b

Z

T

T=2




y

(t� T=2)n(t)dt

+

Z

T

T=2

n(t)n

0

(t� T=2)dt:

(13)

In (12) and (13) the �rst term provides the desired 
oeÆ
ients a

s

and b

s

, respe
tively, and it is proportional

to the energy per bit E

b

. All the remaining terms are due to the noise on the 
hannel. In parti
ular, the se
ond,

third and fourth terms depend on produ
ts of the 
hannel noise and the 
haoti
 basis fun
tions. A

ording

to [24℄ we refer to these terms as 
ross-produ
ts. Finally, the last term in (12) and (13) depends solely on the


hannel noise. In parti
ular, this term has zero mean value but it has a non-Gaussian distribution, and it 
an

be shown that its varian
e in
reases with the bit duration T [10℄. For a detailed dis
ussion and interpretation

of the above terms we refer the reader to [24℄.

We anti
ipate that, as a re�nement of the preliminary results in [7℄, be
ause of the di�erent stru
ture of the

observation variables the performan
e of QCSK in the presen
e of noise is in general slightly di�erent from

DCSK. This is dis
ussed in details in the next se
tion.

V. QCSK Noise Performan
e

In this se
tion we report about the performan
e of the proposed QCSK 
ommuni
ation s
heme in the

presen
e of additive white Gaussian noise. We 
onsider here the dis
rete-time version of the QCSK s
heme

shown in Fig. 2. For this analysis we sele
ted the 3-adi
 R�enyi map:

f(x) = (3x+ 1) mod 2� 1;

as an instan
e of 
haoti
 system. For ea
h symbol period T a length-K ve
tor x of 
haoti
 iterates is generated.

Its mean value is then subtra
ted and the ve
tor is normalized to ensure that the 
onstraint E

b

= 
onst is

satis�ed. This ve
tor represents the 


x


omponent of the 
haoti
 signals basis. The orthonormal 
omponent




y

is 
omputed a

ording to the FFT-based algorithm des
ribed in Se
. III-C.1. The basis signals 


x

and 


y

are then multiplied by

p

E

b

and used to form the referen
e and the information-bearing part of the QCSK

signal. The latter is obtained by 
ombining the 
haoti
 basis ve
tors a

ording to the 
onstellations shown in

Fig. 3.

A. Simulation Results

Fig. 4 shows a plot of the BER (bit error rate) versus E

b

=N

0

, where E

b

represents the energy per bit and

N

0

is the (unilateral) noise power spe
tral density. The performan
e 
urves refer to the signal 
onstellations

shown in Fig. 3, for K = 2; 16; 64.

The performan
e 
urves refer to the signal 
onstellations shown in Fig. 3, for K = 2; 16; 64. Note that the

DCSK1 and DCSK2 versions exhibits the same BER performan
e and the same 
an be said about QCSK1

and QCSK2. Then, we 
an 
on
lude that the hypothesis made in Se
. IV-B on the noise 
omponent n

0

at the

output of the Hilbert �lter is veri�ed. In parti
ular, this 
on�rms that the distribution of n

0


an be 
onsidered

Gaussian and 
oin
iding with n.

The simulations have been 
arried out using Matlab and veri�ed with the simulation pa
kage Sys-

temView.

B. Dependen
e on the Correlation Time

As pointed out in [24℄, [25℄, [26℄, the performan
e of transmitted-referen
e 
ommuni
ation s
hemes (su
h as

DCSK and QCSK) depends on the 
orrelation time K.

4

This property is 
on�rmed by Fig. 4, whi
h shows the

4

With an abuse of notation we refer here to K as the 
orrelation time, while it should be 
lear that K represents the length of

the 
haoti
 ve
tors 


x

, 


y

and m

s

.
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BER performan
e of the QCSK and DCSK s
hemes for di�erent 
orrelation times K. As visible from Fig. 4,

the error probability in
reases as K is in
reased. Note also that for low values (K < 16) of the 
orrelation

time DCSK performs better than QCSK, while for higher values of K, QCSK outperforms DCSK. This result

is explained in details in the next subse
tion.

C. Theoreti
al Analysis

The goal of this part of the work is to derive analyti
al expressions for the bit error rate of the QCSK

s
heme. In parti
ular, we develop formulas expressing the BER in terms of probabilities of variables whi
h

are fun
tions of standard Gaussian random variables. Then, by applying the 
entral limit theorem [23℄ we �nd

approximate analyti
al expressions of the BER valid for suÆ
iently large K. The key result for our analysis is

expressed by Lemma 1 (in Se
. V-C.1), showing that the performan
e of the QCSK s
heme does not depend

on the parti
ular 
hoi
e of the referen
e signal. We will present the analysis for the dis
rete-time 
ase, whi
h


an also be 
onsidered as a model of the 
ontinuous-time system, as previously mentioned.

C.1 BER Analyti
al Expressions

Let us assume that the referen
e signal 
onsists of K 
haoti
 samples, generated by a 
haoti
 system with

frequen
y f

s

. The length of the information-bearing part is also K, resulting in a total of 2K samples per

symbol and T = 2Kt

s

, where t

s

= 1=f

s

. Correspondingly, by keeping into a

ount that in QCSK two bits of

information are asso
iated to every symbol, the energy per bit E

b

is given by:

E

b

=

t

s

2

 

K

X

i=1

r

2

i

+

K

X

i=1

m

2

i

!

=

t

s

2

�

jjrjj

2

+ jjmjj

2

�

;

where (r

1

; : : : ; r

K

) and (m

1

; : : : ;m

K

) are the referen
e and information ve
tors, respe
tively. On the other

hand, AWGN noise with spe
tral density N

0

translates into independent random Gaussian variables with

varian
e �

2

being added to ea
h sample, where �

2

= N

0

=(2t

s

).

In this analysis we 
onsider the 
onstellation QCSK2 with the following symbol en
oding:

Symbol Bits Referen
e Message

0 (0; 0) a 
(+a+ b)

1 (0; 1) a 
(+a� b)

2 (1; 0) a 
(�a+ b)

3 (1; 1) a 
(�a� b)

where 
 = 1=

p

2. Sin
e ea
h sample is 
ontaminated by AWGN, at the re
eiver we observe a+� = (a

i

+�

i

)

K

i=1

and m + � = (m

i

+ �

i

)

K

i=1

, where �

i

and �

i

are zero mean independent Gaussian random variables with

varian
e �

2

. The �rst bit is dete
ted by 
orrelating m+ � with a+ �. If the 
orrelation result is larger than

zero then the de
ision is taken that the transmitted bit was \0", otherwise \1". The se
ond bit is dete
ted

by 
orrelating m+ � with the Hilbert transform of a+ �. Here we assume that the Hilbert transform of a+ �

is b+ �

0

, where �

0

is also a ve
tor of independent random Gaussian variables with varian
e �

2

. The validity

of this assumption has been dis
ussed in Se
. IV-B.

Lemma 1: Let us assume that the QCSK referen
e signal and the orthogonal signal used for the transmission

have always the same norm e (it follows that the energy per bit is kept 
onstant). Then the bit error rate (or

probability of error) is equal to:

BER

QCSK

= P

QCSK

(E) = P

�

1

p

2

jjajj

2

+

1

p

2

�(a+ b)

T

� + �a

T

� + �

2

�

T

� < 0

�

; (14)

where a and b are arbitrary ve
tors su
h that a

T

b = 0, jjajj = jjbjj = e, while � and � are ve
tors of independent

standard (i.e. zero mean and unity varian
e) Gaussian random variables.
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Proof: In QCSK the error probability 
an be 
omputed as

P

QCSK

(E) =

1

2

(P (E

1

) + P (E

2

));

where P (E

i

) is the error probability for the ith bit. The latter 
an be 
omputed as:

P (E

i

) =

3

X

j=0

P (E

i

js=j)P (s=j);

where P (E

i

js= j) is the 
onditional error probability in the ith bit under 
ondition that the symbol j was

transmitted, and P (s=j) is the probability of emitting the symbol j.

From the operation of the re
eiver it follows that:

P (E

1

js=0) =P ((a+ �)

T

(
(a+ b) + �) < 0); (15)

P (E

1

js=1) =P ((a+ �)

T

(
(a� b) + �) < 0); (16)

P (E

1

js=2) =P ((a+ �)

T

(
(�a+ b) + �) > 0); (17)

P (E

1

js=3) =P ((a+ �)

T

(
(�a� b) + �) > 0); (18)

P (E

2

js=0) =P ((b+ �)

T

(
(a+ b) + �) < 0); (19)

P (E

2

js=1) =P ((b+ �)

T

(
(a� b) + �) > 0); (20)

P (E

2

js=2) =P ((b+ �)

T

(
(�a+ b) + �) < 0); (21)

P (E

2

js=3) =P ((b+ �)

T

(
(�a� b) + �) > 0); (22)

where 
 = 1=

p

2. First let us observe that the probabilities (17), (18), (20), (22) are equal to (16), (15),

(21) and (19), respe
tively. This 
an be seen by multiplying the formulas inside the parentheses by �1 and

observing that the random ve
tor �� has the same distribution as �.

From Lemma 3, whi
h is proved in Appendix A, it follows that the distributions appearing in the equations

(15), (16), (19) and (21) are all equal. Hen
e, the probabilities (15){(22) are equal. They also do not depend

on the parti
ular 
hoi
e of a and b, as long as a and b are orthogonal and have 
onstant norm. Hen
e

P

QCSK

(E) = P (E

1

js=0) = P ((a+ �)

T

(
(a + b) + �) < 0)

= P ((a+ ��

0

)

T

(
(a+ b) + ��

0

) < 0)

= P (
jjajj

2

+ 
�(a+ b)

T

�

0

+ �a

T

�

0

+ �

2

�

0

T

�

0

< 0)

where �

0

and �

0

are ve
tors of independent standard Gaussian variables.

Now let us express the error probability in terms of the energy per bit E

b

= 2t

s

jjajj

2

=2 = t

s

jjajj

2

and the

noise spe
tral density N

0

= 2t

s

�

2

. Sin
e the BER performan
e does not depend on the parti
ular 
hoi
e of a

and b, let us 
hoose: a = (jjajj; 0; : : : ; 0) and b = (0; jjajj; 0 : : : ; 0). The formula for the QCSK error probability

reads then:

BER

QCSK

= P

QCSK

(E) = P

 

r

E

b

N

0

(�

1

+ �

2

+

p

2�

1

) +

K

X

i=1

�

i

�

i

< �

p

2

E

b

N

0

!

(23)

where �

i

, �

i

are independent standard Gaussian variables.

Remark 1: Similarly for DCSK one 
an show that the error probability does not depend on the referen
e

ve
tor a and is equal to:

P

DCSK

(E) = P

�

jjajj

2

+ �a

T

(� + �) + �

2

�

T

� < 0

�

;

where again �

i

, �

i

are independent Gaussian variables with zero mean and unity varian
e. By taking into

a

ount that for the DCSK s
heme E

b

= 2t

s

jjajj

2

and 
hoosing a = (jjajj; 0; : : : ; 0) we obtain:

BER

DCSK

= P

DCSK

(E) = P

 

r

E

b

N

0

(�

1

+ �

1

) +

K

X

i=1

�

i

�

i

< �

E

b

N

0

!

: (24)
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where �

i

, �

i

are independent standard Gaussian random variables.

From the formulas (23) and (24) it is 
lear that the performan
e of both methods degrades with in
reasingK.

In fa
t, for larger K the only modi�
ation is the larger number of terms of the form �

i

�

i

, whi
h in
rease the

error probability. These formulas 
an be used for 
omputation of the BER 
urves for the QCSK and DCSK

te
hniques. Sin
e we know the analyti
al expressions for the densities of �

i

and �

i

we 
an evaluate the density

of the variables

q

E

b

N

0

(�

1

+�

2

+

p

2�

1

)+

P

K

i=1

�

i

�

i

and

q

E

b

N

0

(�

1

+�

1

)+

P

K

i=1

�

i

�

i

in terms of de�nite integrals. For

the 
omputation of probabilities (23) and (24) one may use numeri
al integration methods. In this work these

probabilities have been estimated numeri
ally by 
onsidering an ensemble of ve
tors �

1

; : : : ; �

K

, �

1

; : : : ; �

K

,

a

ording to the normal distribution N(0; 1), and applying the de�nition of probability as relative frequen
y

asso
iated with an observed event [9℄. This approa
h is very a

urate for moderate values of E

b

=N

0

. Note

that for DCSK there exists an exa
t expression for bit error rate [24℄, [25℄, whi
h gives results 
oin
iding with

those obtained using the above pro
edure.

In Fig. 5 we present a 
omparison of the theoreti
al predi
tions with the simulation results for a QCSK

system based on the Renyi map. One 
an 
learly see the perfe
t agreement. Fig. 6 shows the theoreti
al

predi
tions for the BER, 
omparing QCSK versus DCSK. For low values of E

b

=N

0

, QCSK exhibits better

BER performan
e than DCSK. For higher E

b

=N

0

and small K, DCSK has lower error probability. For K = 16

the BER 
urves are 
lose to ea
h other, while for larger K QCSK performs better than DCSK in the whole

range of E

b

=N

0

.

C.2 Approximation Using the Central Limit Theorem

The 
entral limit theorem [23℄ states that if fy

i

g

N

i=1

are statisti
ally independent zero mean random variables

with the same probability density fun
tion and varian
e �

2

, and z =

1

p

N

P

N

i=1

y

i

, then the distribution of

z approa
hes Gaussian distribution with zero mean and varian
e �

2

as N goes to in�nity. We now use this

result to develop approximate analyti
al expressions for the BER in QCSK (and DCSK).

In order to apply the 
entral limit theorem we assume that K is even and we 
hoose ve
tors

a =

jjajj

p

K

(1; 1; : : : ; 1); b =

jjajj

p

K

(1;�1; : : : ; 1;�1):

From Lemma 1 it follows that

P

QCSK

(E) = P

0

�

1

p

2

jjajj

2

+

1

p

2

�

K

X

i=1;i�odd

2�

i

+ �

K

X

i=1

�

i

+ �

2

K

X

i=1

�

i

�

i

< 0

1

A

: (25)

Dividing the expression within the parentheses by �

2

and taking into a

ount that jjajj=� =

p

2E

b

=N

0

we

obtain:

P

QCSK

(E) = P

0

�

K

X

i=1;i�odd

 

r

2E

b

KN

0

(

p

2�

i

+ �

1

+ �

i+1

) + �

i

�

i

+ �

i+1

�

i+1

!

< �

p

2E

b

N

0

)

1

A

Let us de�ne for i = 1; : : : ;K=2

y

i

=

r

2E

b

KN

0

(

p

2�

2i�1

+ �

2i�1

+ �

2i

) + �

2i�1

�

2i�1

+ �

2i

�

2i

;

and

z =

r

2

K

K=2

X

i=1

y

i

:
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y

i

are zero mean random variables with the same distribution and varian
e: �

2

y

= 2 + 8E

b

=(KN

0

). It follows

that:

P

QCSK

(E) = P

 

r

K

2

z < �

p

2E

b

N

0

!

= P

�

z < �

2E

b

KN

0

�

:

For large K, the random variable z has approximately Gaussian distribution with varian
e �

y

, thus the

probability of error 
an be 
omputed as

P

QCSK

(E) =

1

2

erf


 

2E

b

KN

0

p

2�

y

!

=

1

2

erf


 

�

4

N

0

E

b

+K

N

2

0

E

2

b

�

�1=2

!

; (26)

where erf
(�) is the 
omplementary error fun
tion [23℄.

For DCSK this method gives the following expression:

P

DCSK

(E) =

1

2

erf


 

�

4

N

0

E

b

+ 2K

N

2

0

E

2

b

�

�1=2

!

: (27)

These approximations are valid for large 
orrelation times K. Sin
e the erf
 is a stri
tly de
reasing fun
tion

it follows that for large K the QCSK method is better than DCSK in terms of error probability.

Fig. 6 shows the BER 
urves obtained by plotting formulas (26) and (27), for K = 2; 16; 64. As it 
an be

seen in Fig. 6(
), the approximate results based on the 
entral limit theorem and the exa
t 
urves tend to

get 
loser for K = 64. For smaller values of K the error due to the assumption that the distribution of z is

Gaussian 
auses una

eptable di�eren
es (see Fig. 6(b) and espe
ially Fig. 6(a)). This fa
t is demonstrated

by Fig. 7 showing that the distribution of

P

k

i=1

y

i

, for small k, is far from Gaussian.

D. QCSK versus DCSK

Summarizing, QCSK may be 
onsidered equivalent to two DCSK systems: the �rst using the referen
e signal




x

(t) and the se
ond using the orthogonal signal 


y

(t) whi
h is restored at the re
eiver from the referen
e part

of the transmitted signal. The advantage of the proposed QCSK s
heme is that there is no need to send

the orthogonal signal over the 
hannel as its estimate 
an be reprodu
ed from the re
eived referen
e signal.

The pri
e is the higher 
omplexity as QCSK requires the generation of the 
omplementary signal in both the

transmitter and the re
eiver. The BER performan
es of the DCSK and QCSK s
hemes are similar but QCSK

has double data rate. In fa
t the QCSK symbol 
onsists of two bits as opposed to one bit in DCSK. Sin
e

the two signals o

upy the same bandwidth it follows that QCSK has higher spe
tral eÆ
ien
y with respe
t

to DCSK.

VI. Extension to M-ary Constellations

In general QCSK may be extended to M -symbol 
onstellations. For example, this 
an be obtained by


onsidering the set of 
omplex numbers: m

s

= e

i2s�=M

; s = 1; : : : ;M . This 
hoi
e gives a 
haos-based version

of M -ary PSK (Phase Shift Keying). Moreover, if the 
onstellation signals are not restri
ted to lie on a 
ir
le

one 
an design a 
haoti
 version of QAM (Quadrature Amplitude Modulation) [9℄. In this 
ase however the


onditions E

b

= 
onst is no longer satis�ed.

VII. Con
lusions

In this paper we have proposed a multilevel 
haos-based modulation s
heme 
alled QCSK (Quadrature

Chaos Shift Keying). The QCSK s
heme is derived from DCSK and exhibits similar BER performan
e as

DCSK but double data rate for a given bandwidth (or half bandwidth for given data rate), resulting in

an in
reased spe
tral eÆ
ien
y. The drawba
k 
onsists in an in
reased 
omplexity of both transmitter and

re
eiver.
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IX. Appendix A

In this Appendix we prove two lemmas, whi
h are ne
essary for showing that the performan
e of the QCSK

modulation method does not depend on the parti
ular 
hoi
e of the orthogonal signals a and b, as long as

jjajj = jjbjj = 
onst.

The following lemma shows that a linear transformation de�ned by an orthonormal matrix transforms a

ve
tor of independent Gaussian variables into a ve
tor of random variables with the same properties.

Lemma 2: Let us assume that � = (�

1

; : : : ; �

n

) is a ve
tor of independent Gaussian variables with zero mean

and varian
e �

2

. Let T be an orthonormal matrix, i.e. T

�1

= T

T

and rows of T have norm 1 (

P

n

j=1

T

2

ij

= 1

for i = 1; : : : ; n). Let �

0

= T�. Then �

0

is a ve
tor of independent Gaussian variables with zero mean and

varian
e �

2

.

Proof: It is well known that a linear 
ombination z = a

1

x

1

+ � � � + a

n

x

n

of zero mean independent

Gaussian random variables x

i

, ea
h with varian
e �

2

is itself a zero mean Gaussian variable with varian
e

�

2

z

= (a

2

1

+ � � �+a

2

n

)�

2

. It follows that �

0

i

=

P

n

j=i

T

ij

�

j

is a zero mean random Gaussian variable with varian
e

�

2

�

0

i

=

n

X

j=i

T

2

ij

�

2

= �

2

:

From the assumptions it follows that the joint probability density fun
tion of �

1

: : : ; �

L

is equal to

p

�

1

::: ;�

L

(�

1

; : : : ; �

L

) =

n

Y

i=1

1

p

2��

exp

�

�

�

2

i

2�

2

�

:

We will show independen
e of �

0

i

using the theorem on reversible transformations of random ve
tors [27℄.

A

ording to this theorem the joint density fun
tion of �

0

= f(�) (where f is reversible, g = f

�1

) 
an be


omputed as

p

�

0

1

::: ;�

0

L

(�) = jDg(�)jp

�

1

::: ;�

L

(g

1

(�); : : : ; g

n

(�));

where � = (�

1

; : : : ; �

n

).

In our 
ase �

0

= f(�) = T�, � = g(�

0

) = T

T

�, the Ja
obian of g is 
onstant and its determinant is

jDg(�)j = jT

T

j = 1.

p

�

0

(�) =

n

Y

i=1

1

p

2��

exp

�

�

g

2

i

(�)

2�

2

�

=

1

(

p

2��)

n

exp

�

�

P

n

i=1

g

2

i

(�)

2�

2

�

=

1

(

p

2��)

n

exp

�

�

jjT

T

�jj

2

2�

2

�

=

1

(

p

2��)

n

exp

�

�

jj�jj

2

2�

2

�

=

n

Y

i=1

1

p

2��

exp

�

�

�

2

i

2�

2

�

=

n

Y

i=1

p

�

0

i

(�

i

):

Sin
e the joint density fun
tion of �

0

= (�

0

1

; �

0

2

; : : : ; �

0

n

) 
an be fa
torized in the form shown above it follows

that the random variables �

0

i

are independent.

The next lemma states that the distributions of random variables appearing in the formulas (15){(22) do

not depend on a and b, as long as a and b are orthogonal and their Eu
lidean norms are equal and �xed.

Lemma 3: Let � = (�

1

; : : : ; �

n

) and � = (�

1

; : : : ; �

n

) be ve
tors of independent Gaussian variables with zero

mean and varian
e �

2

. Let n � 2, a = (a

1

; : : : ; a

n

) and b = (b

1

; : : : ; b

n

). Let us assume that jjajj = jjbjj is


onstant and a

T

b = 0. Then the random variable de�ned as

z = (a+ �)

T

((a+ b)=

p

2 + �) (28)
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has a distribution whi
h does not depend on a and b.

Proof: Let 
 = 1=

p

2. The distribution under 
onsideration 
an be written as follows:

z = 
jjajj

2

+ 
(a+ b)

T

� + a

T

� + �

T

�

We skip the 
onstant term 
jjajj

2

. We show that the following distributions are the same

z =
(a+ b)

T

� + a

T

� + �

T

�; (29)

�z =
jjajj(�

1

+ �

2

) + jjajj�

i

+ �

T

�: (30)

The �rst distribution is obtained using arbitrary ve
tors a and b, while the se
ond is obtained for a =

(jjajj; 0; : : : ; 0), b = (0; jjajj; 0; : : : ; 0). First we split the random ve
tor � into the sum of two independent

random ve
tors, with 
omponents being random independent Gaussian variables with the same varian
e as �.

� =

1

p

2

(

~

� +

�

�) = 
(

~

� +

�

�):

After this substitution z 
an be rewritten as

z = 
(a

T

� + b

T

�) + 
a

T

(

~

� +

�

�) + 
�

T

(

~

� +

�

�) = 
(a

T

� + b

T

� + a

T

~

� + a

T

�

� + �

T

~

� + �

T

�

�): (31)

Let e

1

=

a

jjajj

and e

2

=

b

jjbjj

. Let us 
hoose ve
tors e

3

; : : : ; e

n

in su
h a way that e

1

; : : : ; e

n

is an orthonormal

base in R

n

. Also, we de�ne the square matrix T = (e

1

; e

2

; : : : e

n

)

T

. We now de�ne �

0

= T�,

~

�

0

= T

~

�,

�

�

0

= T

�

�.

Sin
e T is an orthonormal matrix it follows from Lemma 2 that �

0

,

~

�

0

,

�

�

0

are ve
tors of independent random

variables with same distribution as �,

~

�,

~

�.

We have the following relations:

� = T

T

�

0

;

~

� = T

T

~

�

0

;

�

� = T

T

�

�

0

;

a

T

� = a

T

T

T

�

0

= a

T

e

1

�

0

1

= jjajj�

0

1

;

b

T

� = jjajj�

0

2

; a

T

~

� = jjajj

~

�

0

1

; a

T

�

� = jjajj

�

�

0

1

;

�

T

~

� = (T

T

�

0

)

T

T

T

~

�

0

= �

0

T

TT

T

~

�

0

= �

0

T

~

�

0

;

�

T

�

� = �

0

T

�

�

0

:

from whi
h we obtain �nally

z = 
(jjajj�

0

1

+ jjajj�

0

2

+ jjajj

~

�

0

+ jjajj

�

�

0

+ �

0

T

~

�

0

+ �

0

T

�

�

0

) = 
jjajj(�

0

1

+ �

0

2

) + jjajj�

0

1

+ �

0

T

�

0

;

where �

0

= 
(

~

�

0

+

�

�

0

) is a ve
tor of independent random Gaussian variables with varian
e �

2

. Thus we have

shown that the distributions (29) and (30) are the same.
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e is approximately the same, while for larger K the QCSK

s
heme has smaller error probability in the whole range of E

b

=N

0

.
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Fig. 7. Probability density fun
tion of
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random variables with normal distribution N(0; 1), for: (a) k = 1 and (b) k = 5.
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