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Abstrat

In this paper we propose a multilevel version of the Di�erential Chaos Shift Keying (DCSK) teleommuniation

system. The sheme, whih we all Quadrature Chaos Shift Keying (QCSK), is based upon the generation of an

orthogonal basis of haoti funtions. QCSK is haraterized by an inreased data rate with respet to DCSK, with the

same bandwidth oupation, resulting in an improved spetral eÆieny. The prie for the performane enhanement is

the inreased omplexity of both the transmitter and the reeiver.
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I. Introdution

In the last few years a great researh e�ort has been devoted towards the development of eÆient haos-based

modulation tehniques [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, [7℄. Among the several systems proposed, one of the best bit error

rate (BER) performanes has been ahieved by the DCSK (Di�erential Chaos Shift Keying) sheme [4℄ and

its variation utilizing frequeny modulation, that is FM-DCSK [5℄. These shemes are based upon wideband

haoti signals whih under severe multipath propagation exhibit a better performane than onventional

systems based on sinusoidal arriers [8℄. DCSK is a transmitted-referene digital signaling sheme [9℄. For

eah symbol period, the DCSK signal onsists of a piee of haoti waveform, followed by a non-inverted or

inverted opy of itself, depending on the binary symbol (\0" or \1") to be transmitted. In [10℄ the �rst and

the seond part of the DCSK signal are alled referene and information-bearing hip, respetively.

Reently, several di�erent methods have been proposed in the literature to inrease the data rate of

DCSK [11℄, [12℄. The simplest option onsists of saling the information and/or the referene parts of the

signal. For example the information-bearing part may be multiplied by a number depending on the symbol

transmitted. A more sophistiated approah uses two haoti basis funtions and divides the symbol period

into four time slots in order to obtain a multilevel sheme [11℄. These methods, though, ahieve higher data

rate by giving up some of the BER performane.

In this work we introdue a novel multilevel haos-based ommuniation sheme alled QCSK (Quadrature

Chaos Shift Keying) haraterized by the same bandwidth oupation and similar BER performane as DCSK,

but higher data rate.

QCSK may be onsidered as the haoti ounterpart of QPSK (Quadrature Phase Shift Keying) in on-

ventional digital ommuniations. We reall [9℄ that QPSK exhibits the same BER performane as BPSK

(Binary Phase Shift Keying) with the same bandwidth oupation, but double data rate. This is ahieved

by employing a quadrature pair of sinusoidal arriers to generate an orthogonal signal basis. Sine the basis

omponents are orthogonal, they an be used to modulate information separately as for two BPSK systems

sharing the same hannel without (ideally) interfering with eah other. Orthogonal basis funtions, usually

sinusoids, are used in digital ommuniations to generate large signal onstellations in order to inrease the
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spetral eÆieny. Typial examples are M -ary PSK (Phase Shift Keying) where the phase of the transmit-

ted signal is varied among M disrete values and QAM (Quadrature Amplitude Modulation) where both the

amplitude and the phase of the referene sinusoid are varied [13℄.

The basi idea underlying the QCSK sheme is the generation of haoti signals whih are orthogonal

in a spei�ed time interval. This allows the reation of a basis of haoti funtions from whih arbitrary

onstellations of haoti signals an be onstruted. For instane, in QCSK a linear ombination of two haoti

basis funtions is used to enode four symbols. The key point for exploiting this idea in a ommuniation

system is that one must be able to generate the haoti basis funtions starting from a single haoti signal.

The same onept holds for onventional digital ommuniation shemes suh as QPSK, where the quadrature

omponent an be obtained from the in phase one by means of a simple phase shifter.

The paper is organized as follows. In Se. II we reall the operation priniple of DCSK omparing it to

BPSK. Se. III deals with the generation of a basis of haoti signals. In Se. IV we desribe in details the

operation of the proposed QCSK sheme. Then, in Se. V we present the theoretial and simulation results

for the performane of QCSK in the presene of noise. Finally, in Se. VI we disuss the general ase of

haos-based multilevel signaling shemes.

II. Differential Chaos Shift Keying

In DCSK two haoti sample funtions are sent for eah symbol period, orresponding to one bit of infor-

mation. The �rst funtion is used as a referene, while the seond represents the information-bearing part of

the signal. On the reeiver side one observes a noisy version of the transmitted signal. The digital information

is extrated by means of di�erentially oherent demodulation [10℄. Namely, at the reeiver the orrelation be-

tween the two reeived haoti funtions is omputed. The output of the orrelator is then sampled aording

to the symbol time and a deision on the reeived symbol is taken.

A. DCSK versus BPSK

Di�erential Chaos Shift Keying is in some sense similar to the BPSK modulation sheme [9℄. In BPSK

one transmits a sin(�) funtion signal or its inverted version depending on the bit of information. In priniple

DCSK does exatly the same exept that the haoti signal used for sending the information is di�erent for

eah bit, thus one needs to send the orresponding referene signal as well in order to enable the detetion at

the reeiver.

One of the modi�ations of BPSK is the QPSK sheme, whih exhibits the same BER performane as

BPSK, but is more eÆient by having a double data rate. Basially, in QPSK a two-bit symbol is enoded

as a linear ombination of two orthogonal waveforms (sin and os). In the rest of this paper we desribe how

this idea an be applied for inreasing the data rate of DCSK.

III. Orthogonal Chaoti Signals

The �rst step for introduing QCSK is the generation of a (haoti) signal orthogonal to a given haoti

referene signal in a spei�ed time interval. Typially, two independent haoti signals 

1

(t) and 

2

(t) (or even

di�erent segments of the same haoti waveform) exhibit a very low ross-orrelation (resp. auto-orrelation)

and in that sense they might be onsidered approximately orthogonal over a suÆiently long time interval [0; � ℄:

Z

�

0



1

(t)

2

(t)dt � 0:

In order to produe an orthogonal basis funtion useful for ommuniation purposes we are interested in

the generation of a haoti signal y exatly orthogonal to a referene haoti signal x, and whih ould be

generated starting from x. This problem is the subjet of the next subsetion.
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A. Complementary Signal

Let x(t) be a haoti referene signal de�ned for t 2 [0; � ℄. Let us assume that the signal x has zero mean

value

1

and that in the interval [0; � ℄ it admits the following Fourier expansion (with f

0

= 0):

x(t) =

1

X

k=1

f

k

sin(k!t+ '

k

); (1)

where ! = 2�=� . Correspondingly, we denote by P

x

the average power of x(t) in the time interval [0; � ℄:

P

x

=

1

�

Z

�

0

x

2

(t)dt =

1

2

1

X

k=1

f

2

k

: (2)

We de�ne the omplementary signal y(t), with t 2 [0; � ℄, as the signal obtained by hanging the phase of eah

Fourier frequeny omponent by �=2, namely:

y(t) =

1

X

k=1

f

k

sin(k!t+ '

k

� �=2): (3)

The signals x(t) and y(t) are orthogonal in the interval I

�

= [0; � ℄ and have the same power, that is:

x?y ()

Z

�

0

x(t)y(t)dt = 0; (4)

P

x

= P

y

()

1

�

Z

�

0

x

2

(t)dt =

1

�

Z

�

0

y

2

(t)dt: (5)

The above properties follow from:

1

�

Z

�

0

f

k

sin(k!t+ '

k

� �)f

m

sin(m!t+ '

m

� �)dt ==

�

1

2

f

2

k

os(�+ �) for k = m;

0 for k 6= m:

(6)

An example of a haoti signal x and the orresponding orthogonal signal y is shown in Fig. 1.

B. Relationship with Hilbert Transform

Referring to the de�nition (3) of the omplementary signal y, we observe that by extending x(t) and y(t)

to periodi signals with period � , y(t) represents the Hilbert transform of x(t). We reall that the Hilbert

transform of a real signal is obtained by introduing a �=2 phase shift in every frequeny omponent. This

property is well known and exploited for example in the ontext of amplitude modulation (AM) for obtaining

a single (suppressed-arrier) sideband (SSB) signal [9℄. Note also that the Hilbert transform preserves the

spetral properties of the signal; hene we an onlude that the signals x and y have the same bandwidth

oupation.

C. Pratial Algorithms

So far, several methods have been developed to design �nite impulse response (FIR) and in�nite impulse

response (IIR) digital Hilbert transformers suh as the Remez exhange algorithm [14℄, eigen�lter method [15℄,

and weighted least squares method [16℄. Moreover, there are several methods for implementing the Hilbert

transformer, inluding swithed-apaitor implementation [17℄, neural network [18℄, and multiplierless trian-

gular array realization [19℄. Typially, these methods provide only an approximation of the Hilbert transform,

as the ideal Hilbert �lter impulse response extends in�nitely in both diretions. However, in this work rather

than produing the ideal Hilbert transform, we are interested in generating the omplementary signal y (given

x) suh that the orthogonality ondition (4) is exatly satis�ed over a given time interval.

We present here three methods, two of whih are suitable for disrete-time signals (C.1 and C.2) and one

for ontinuous-time signals (C.3).

1

This assumption simply implies that the DC value of the referene signal x(t) is �ltered out.
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C.1 Frequeny Domain Approah

Given a length-K haoti sequene x = fx

j

g

K

j=1

we an generate the omplementary signal y = fy

j

g

K

j=1

aording to the following proedure, in analogy with the AM-SSB modulation [20℄.

1. Subtrat the mean value from the input sequene (and if neessary zero pad suh that K = 2

n

):

x

0

= x� x:

2. Calulate the fast Fourier transform (FFT):

x

f

= F [x

0

℄ :

3. Create a vetor h whose elements h(j) have the values

� 1 for j = 1; (K=2) + 1,

� 2 for j = 2; 3; : : : ; (K=2),

� 0 for j = (K=2) + 2; : : : ;K,

and alulate x

h

as the element-wise produt of h and x

f

(this operation orresponds to eliminate the FFT

oeÆients assoiated with negative frequenies, preserving the signal energy);

4. Take the inverse FFT:

y = F

�1

[x

h

℄ :

In pratie, the algorithm desribed an be implemented by means of a DSP (digital signal proessor) unit.

C.2 Time Domain Approah

Another viable method to ompute the Hilbert transform of a given disrete-time signal x is to design a

FIR (Finite Impulse Response) �lter approximation to the Hilbert transform operator. An FIR �lter an be

designed by appropriately windowing the ideal impulse response [21℄:

h(k) =

(

2

�

sin

2

(�k=2)

k

for k 6= 0;

0 for k = 0:

(7)

Note that Eq. (7) desribes a nonausal �lter, whih means that in pratie a delay m is in the �lter response.

Namely, the orthogonal vetor y an be generated by onvolution of x with h:

y(k) =

m

X

j=�m

x(k + j)h(j):

Of ourse, due to the �nite number of taps, the FIR implementation provides an approximation of the Hilbert

transform. For a disussion of the �lter length seletion refer to [21℄.

C.3 Allpass Filters

In the ontinuous-time domain the Hilbert transform operation may be realized by an allpass �lter with

unity gain and phase response equal to �=2 over a ertain frequeny range [22℄. Typially the ideal response

is approximated by means of elliptial �lters. However, in pratie it is hard to obtain the desired response

over a suÆiently wide bandwidth. In addition, as noted above the ideal Hilbert transform �lter is nonausal.

In the ontinuous-time implementation, though, adding a delay to make the �lter ausal also adds a onstant

phase delay. This results in a linear phase omponent whih is an undesirable e�et.

D. Chaoti Signal Constellations

The main advantage of produing an orthogonal basis of haoti funtions [x(t); y(t)℄ is that large signal

sets an be generated, resulting in high spetral eÆieny. Referring to (2), an orthonormal basis of haoti

sample funtions over the interval I

�

= [0; � ℄ an be de�ned as follows:

C � [

x

(t); 

y

(t)℄ =

�

1

p

E

�

x(t);

1

p

E

�

y(t)

�

:
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Chaoti signal onstellations

s m

s

= a

s

+ ib

s

m

s

(t)

s=0 1 +

x

(t)

DCSK1

s=1 �1 �

x

(t)

s=0 i +

y

(t)

DCSK2

s=1 �i �

y

(t)

s=0 1 +

x

(t)

s=1 i +

y

(t)

QCSK1

s=2 �i �

y

(t)

s=3 �1 �

x

(t)

s=0 (+1 + i)=

p

2 (+

x

(t) + 

y

(t))=

p

2

s=1 (�1 + i)=

p

2 (�

x

(t) + 

y

(t))=

p

2

QCSK2

s=2 (+1� i)=

p

2 (+

x

(t)� 

y

(t))=

p

2

s=3 (�1� i)=

p

2 (�

x

(t)� 

y

(t))=

p

2

TABLE I

Chaoti signal onstellations and orresponding signals for the ases (a), (b), (), (d) of Fig. 3.

where: E

�

= P

x

� , is the energy assoiated with x (and y) over I

�

, suh that:

Z

�

0



2

x

(t)dt =

Z

�

0



2

y

(t)dt = 1; (8)

(and of ourse:

R

�

0



x

(t)

y

(t)dt = 0). The orthonormality ondition (8) implies that the energy assoiated

with the signals 

x

(t) and 

y

(t) is onstant for every interval I

�

and in partiular equals unity.

A onstellation of haoti signals an then be generated as linear ombinations of the basis signal 

x

and



y

, that is:

m

s

(t) = a

s



x

(t) + b

s



y

(t);

where the index s identi�es the symbol in the signal spae. Equivalently, the symbol s an be represented as

a omplex number

2

:

m

s

= a

s

+ ib

s

:

In this work we onsider the four signal onstellations shown in Fig. 3, whose analytial representations

are reported in Table I. Constellations (a) and (b) are two-level signaling, the �rst one being the ordinary

binary DCSK. The ase (b) may have the advantage|with respet to onventional DCSK|that the signal

transmitted is never repeated, thus resulting possibly in a low probability of intereption (LPI). On the other

hand, Fig. 3(,d) show the signal onstellations orresponding to two versions of a four-level QCSK haoti

signaling sheme. Finally, one an easily verify that for all ases onsidered:

Z

�

0

m

2

s

(t)dt = 1: (9)

i.e. the information signal m

s

is also haraterized by onstant energy, in partiular equal to unity.

2

In the rest of the paper it should be lear from the ontext whether we are referring to the funtion of time m

s

(t) or to the

orresponding omplex number m

s

.
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IV. Quadrature Chaos Shift Keying

The aim of this setion is to illustrate the QCSK modulation sheme, whose simpli�ed blok diagram

is shown in Fig. 2. For the sake of simpliity we onsider here a baseband system. It is lear, though,

that if the sheme is to be employed for instane for wireless ommuniations a modulator to generate the

orresponding RF passband signal is needed. Furthermore, we assume that the desription of the QCSK

sheme in the ontinuous-time domain admits an equivalent disrete-time representation. Aording to the

sampling theorem [9℄ it suÆes that the sampling rate f

s

� 2B, where B is the max bandwidth oupation of

the orresponding ontinuous-time signals. With these notations, a time interval �t maps in the disrete-time

domain to �k = �t=t

s

, where t

s

= 1=f

s

is the sampling time interval.

A. QCSK Modulation

In QCSK, similarly to DCSK, to send the symbol s we transmit for half symbol period the haoti referene

hip r(t) =

p

E

b



x

(t) and in the seond half the information-bearing hip i(t) =

p

E

b

m

s

(t), where s denotes

the symbol to be transmitted and E

b

is the energy per bit. From the orthonormality ondition (8) and from (9)

it follows E

b

= onst:, that is the energy per bit is onstant for every transmitted bit. In pratie, the same

result may be ahieved by using the haoti signals x and y to drive a frequeny modulator, as it is done in

FM-DCSK [5℄.

In formulae, by denoting with T = 2� the symbol period, the QCSK transmitted signal an be expressed

as:

S

QCSK

(t) =

�

p

E

b



x

(t) for 0 � t < T=2;

p

E

b

(a

s



x

(t� T=2) + b

s



y

(t� T=2)) for T=2 � t < T;

where for QCSK: s = 0; 1; 2; 3.

Referring to the blok diagram in Fig. 2, the QCSK modulator onsists of a haoti generator produing the

signal 

x

, for eah time interval [0; T=2℄. The orresponding orthogonal signal 

y

is generated by the Hilbert

�lter, that for simpliity we assume to introdue no extra-delay.

3

The enoder produes a linear ombination

of the signals 

x

and 

y

, depending on the symbol s to be transmitted. The latter information is provided

by the Bit/Symbol onverter, mapping eah input bit pair to the orresponding symbol. As a result two

bits of information are transmitted for eah symbol period T . Then, a two-hannel analog multiplexer, with

swithing time equal to T=2, is used to form the QCSK signal. Note that, although not expliitly represented

in Fig. 2, the QCSK sheme must inlude a lowpass bandlimiting �lter limiting the bandwidth of the signal

to be transmitted over the hannel. It is indeed lear that every physial hannel possesses �nite bandwidth.

B. QCSK Demodulation

The QCSK signal an be demodulated by using di�erentially oherent detetion [10℄. In this work we will

assume symbol time synhronization, that is the reeiver \knows" the beginning of eah symbol frame (of du-

ration T ) for starting the orrelation proess. This is a standard assumption when analyzing a ommuniation

system [23℄.

Theoretially, by orrelating the information-bearing part of the signal i(t) =

p

E

b

m

s

(t) with the haoti

basis signals 

x

(t) and 

y

(t), over [T=2; T ℄, one an retrieve the omplex number m

s

= a

s

+ ib

s

. In fat,

from (4,5) it follows that:

a

s

=

1

p

E

b

Z

T

T=2

m

s

(t)

x

(t� T=2)dt;

b

s

=

1

p

E

b

Z

T

T=2

m

s

(t)

y

(t� T=2)dt:

In pratie, at the reeiver one observes a noisy and �ltered version of the referene signal, ~r(t), and of

the information-bearing signal

~

i(t). In our analysis we assume that the only distortion a�eting the reeived

3

In pratie this translates into the fat that if the real Hilbert transformer introdues a delay of m samples, the referene signal

needs to be delayed by the same amount.
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signal is additive white Gaussian noise (AWGN). Note that di�erent sample funtions of �ltered noise n(t)

orrupt the referene and information-bearing part of the signal. Namely, the inputs of the orrelator A in

Fig. 2 are:

~r(t� T=2) =

p

E

b

~

x

(t� T=2) =

p

E

b

[

x

(t� T=2) + n(t� T=2)℄; t 2 [T=2; T ℄; (10)

and:

~

i(t) =

p

E

b

~m

s

(t) =

p

E

b

[a

s



x

(t� T=2) + b

s



y

(t� T=2) + n(t)℄; t 2 [T=2; T ℄; (11)

By using the orrupted haoti referene ~

x

(t) we produe an estimate of the orthogonal signal ~

y

(t). In

partiular, by indiating with H the Hilbert transform operator, it follows that:

~

y

(t� T=2) = H [~

x

(t� T=2)℄

= H [

x

(t� T=2) + n(t� T=2)℄

= 

y

(t� T=2) + n

0

(t� T=2);

where we denoted: n

0

(t) = H [n(t)℄. In the ase of ideal Hilbert transform the statistis of the noise term n

0

oinide with n, that is with AWGN. We assume this to hold true also when onsidering an approximation

by the Hilbert �lter. This hypothesis is on�rmed by our simulation results (see Se. V-A).

The reeived information-bearing signal ~m

s

(t) is orrelated with the noisy versions of the haoti basis

funtions ~

x

(t) and ~

y

(t), as illustrated shematially in Fig. 2. The outputs of the orrelators provide the

observation signals z

a

and z

b

, based on whih a deision about the reeived symbol ~s is taken, one every T

seonds. The deision boundaries for eah signal onstellation are shown in Fig. 3. Finally, the Symbol/Bit

onverter reonstruts the sequene of reeived bits.

C. Observation Signals

The noise performane of a digital ommuniation sheme is determined by the probability distribution of

the observation variables. For QCSK, if the time-varying hannel varies slowly ompared to the symbol rate,

from (10) and (11) it follows:

z

a

=

Z

T

T=2

h

p

E

b



x

(t� T=2) + n(t� T=2)

i h

p

E

b

a

s



x

(t� T=2) +

p

E

b

b

s



y

(t� T=2) + n(t)

i

dt;

whih keeping into aount that 

x

and 

y

are orthonormal over [T=2; T ℄, redues to:

z

a

= a

s

E

b

+

p

E

b

a

s

Z

T

T=2



x

(t� T=2)n(t� T=2)dt

+

p

E

b

b

s

Z

T

T=2



y

(t� T=2)n(t� T=2) +

p

E

b

Z

T

T=2



x

(t� T=2)n(t)dt

+

Z

T

T=2

n(t)n(t� T=2)dt:

(12)

Note that by setting a

s

= �1 and b

s

= 0 the struture of expression (12) for the observation variable z

a

oinides with the DCSK one, as reported for example in [24℄.

Similarly:

z

b

=

Z

T

T=2

h

p

E

b



y

(t� T=2) + n

0

(t� T=2)

i h

p

E

b

a

s



x

(t� T=2) +

p

E

b

b

s



y

(t� T=2) + n(t)

i

dt;
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from whih:

z

b

= b

s

E

b

+

p

E

b

a

s

Z

T

T=2



x

(t� T=2)n

0

(t� T=2)dt

+

p

E

b

b

s

Z

T

T=2



y

(t� T=2)n

0

(t� T=2)dt +

p

E

b

Z

T

T=2



y

(t� T=2)n(t)dt

+

Z

T

T=2

n(t)n

0

(t� T=2)dt:

(13)

In (12) and (13) the �rst term provides the desired oeÆients a

s

and b

s

, respetively, and it is proportional

to the energy per bit E

b

. All the remaining terms are due to the noise on the hannel. In partiular, the seond,

third and fourth terms depend on produts of the hannel noise and the haoti basis funtions. Aording

to [24℄ we refer to these terms as ross-produts. Finally, the last term in (12) and (13) depends solely on the

hannel noise. In partiular, this term has zero mean value but it has a non-Gaussian distribution, and it an

be shown that its variane inreases with the bit duration T [10℄. For a detailed disussion and interpretation

of the above terms we refer the reader to [24℄.

We antiipate that, as a re�nement of the preliminary results in [7℄, beause of the di�erent struture of the

observation variables the performane of QCSK in the presene of noise is in general slightly di�erent from

DCSK. This is disussed in details in the next setion.

V. QCSK Noise Performane

In this setion we report about the performane of the proposed QCSK ommuniation sheme in the

presene of additive white Gaussian noise. We onsider here the disrete-time version of the QCSK sheme

shown in Fig. 2. For this analysis we seleted the 3-adi R�enyi map:

f(x) = (3x+ 1) mod 2� 1;

as an instane of haoti system. For eah symbol period T a length-K vetor x of haoti iterates is generated.

Its mean value is then subtrated and the vetor is normalized to ensure that the onstraint E

b

= onst is

satis�ed. This vetor represents the 

x

omponent of the haoti signals basis. The orthonormal omponent



y

is omputed aording to the FFT-based algorithm desribed in Se. III-C.1. The basis signals 

x

and 

y

are then multiplied by

p

E

b

and used to form the referene and the information-bearing part of the QCSK

signal. The latter is obtained by ombining the haoti basis vetors aording to the onstellations shown in

Fig. 3.

A. Simulation Results

Fig. 4 shows a plot of the BER (bit error rate) versus E

b

=N

0

, where E

b

represents the energy per bit and

N

0

is the (unilateral) noise power spetral density. The performane urves refer to the signal onstellations

shown in Fig. 3, for K = 2; 16; 64.

The performane urves refer to the signal onstellations shown in Fig. 3, for K = 2; 16; 64. Note that the

DCSK1 and DCSK2 versions exhibits the same BER performane and the same an be said about QCSK1

and QCSK2. Then, we an onlude that the hypothesis made in Se. IV-B on the noise omponent n

0

at the

output of the Hilbert �lter is veri�ed. In partiular, this on�rms that the distribution of n

0

an be onsidered

Gaussian and oiniding with n.

The simulations have been arried out using Matlab and veri�ed with the simulation pakage Sys-

temView.

B. Dependene on the Correlation Time

As pointed out in [24℄, [25℄, [26℄, the performane of transmitted-referene ommuniation shemes (suh as

DCSK and QCSK) depends on the orrelation time K.

4

This property is on�rmed by Fig. 4, whih shows the

4

With an abuse of notation we refer here to K as the orrelation time, while it should be lear that K represents the length of

the haoti vetors 

x

, 

y

and m

s

.
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BER performane of the QCSK and DCSK shemes for di�erent orrelation times K. As visible from Fig. 4,

the error probability inreases as K is inreased. Note also that for low values (K < 16) of the orrelation

time DCSK performs better than QCSK, while for higher values of K, QCSK outperforms DCSK. This result

is explained in details in the next subsetion.

C. Theoretial Analysis

The goal of this part of the work is to derive analytial expressions for the bit error rate of the QCSK

sheme. In partiular, we develop formulas expressing the BER in terms of probabilities of variables whih

are funtions of standard Gaussian random variables. Then, by applying the entral limit theorem [23℄ we �nd

approximate analytial expressions of the BER valid for suÆiently large K. The key result for our analysis is

expressed by Lemma 1 (in Se. V-C.1), showing that the performane of the QCSK sheme does not depend

on the partiular hoie of the referene signal. We will present the analysis for the disrete-time ase, whih

an also be onsidered as a model of the ontinuous-time system, as previously mentioned.

C.1 BER Analytial Expressions

Let us assume that the referene signal onsists of K haoti samples, generated by a haoti system with

frequeny f

s

. The length of the information-bearing part is also K, resulting in a total of 2K samples per

symbol and T = 2Kt

s

, where t

s

= 1=f

s

. Correspondingly, by keeping into aount that in QCSK two bits of

information are assoiated to every symbol, the energy per bit E

b

is given by:

E

b

=

t

s

2

 

K

X

i=1

r

2

i

+

K

X

i=1

m

2

i

!

=

t

s

2

�

jjrjj

2

+ jjmjj

2

�

;

where (r

1

; : : : ; r

K

) and (m

1

; : : : ;m

K

) are the referene and information vetors, respetively. On the other

hand, AWGN noise with spetral density N

0

translates into independent random Gaussian variables with

variane �

2

being added to eah sample, where �

2

= N

0

=(2t

s

).

In this analysis we onsider the onstellation QCSK2 with the following symbol enoding:

Symbol Bits Referene Message

0 (0; 0) a (+a+ b)

1 (0; 1) a (+a� b)

2 (1; 0) a (�a+ b)

3 (1; 1) a (�a� b)

where  = 1=

p

2. Sine eah sample is ontaminated by AWGN, at the reeiver we observe a+� = (a

i

+�

i

)

K

i=1

and m + � = (m

i

+ �

i

)

K

i=1

, where �

i

and �

i

are zero mean independent Gaussian random variables with

variane �

2

. The �rst bit is deteted by orrelating m+ � with a+ �. If the orrelation result is larger than

zero then the deision is taken that the transmitted bit was \0", otherwise \1". The seond bit is deteted

by orrelating m+ � with the Hilbert transform of a+ �. Here we assume that the Hilbert transform of a+ �

is b+ �

0

, where �

0

is also a vetor of independent random Gaussian variables with variane �

2

. The validity

of this assumption has been disussed in Se. IV-B.

Lemma 1: Let us assume that the QCSK referene signal and the orthogonal signal used for the transmission

have always the same norm e (it follows that the energy per bit is kept onstant). Then the bit error rate (or

probability of error) is equal to:

BER

QCSK

= P

QCSK

(E) = P

�

1

p

2

jjajj

2

+

1

p

2

�(a+ b)

T

� + �a

T

� + �

2

�

T

� < 0

�

; (14)

where a and b are arbitrary vetors suh that a

T

b = 0, jjajj = jjbjj = e, while � and � are vetors of independent

standard (i.e. zero mean and unity variane) Gaussian random variables.
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Proof: In QCSK the error probability an be omputed as

P

QCSK

(E) =

1

2

(P (E

1

) + P (E

2

));

where P (E

i

) is the error probability for the ith bit. The latter an be omputed as:

P (E

i

) =

3

X

j=0

P (E

i

js=j)P (s=j);

where P (E

i

js= j) is the onditional error probability in the ith bit under ondition that the symbol j was

transmitted, and P (s=j) is the probability of emitting the symbol j.

From the operation of the reeiver it follows that:

P (E

1

js=0) =P ((a+ �)

T

((a+ b) + �) < 0); (15)

P (E

1

js=1) =P ((a+ �)

T

((a� b) + �) < 0); (16)

P (E

1

js=2) =P ((a+ �)

T

((�a+ b) + �) > 0); (17)

P (E

1

js=3) =P ((a+ �)

T

((�a� b) + �) > 0); (18)

P (E

2

js=0) =P ((b+ �)

T

((a+ b) + �) < 0); (19)

P (E

2

js=1) =P ((b+ �)

T

((a� b) + �) > 0); (20)

P (E

2

js=2) =P ((b+ �)

T

((�a+ b) + �) < 0); (21)

P (E

2

js=3) =P ((b+ �)

T

((�a� b) + �) > 0); (22)

where  = 1=

p

2. First let us observe that the probabilities (17), (18), (20), (22) are equal to (16), (15),

(21) and (19), respetively. This an be seen by multiplying the formulas inside the parentheses by �1 and

observing that the random vetor �� has the same distribution as �.

From Lemma 3, whih is proved in Appendix A, it follows that the distributions appearing in the equations

(15), (16), (19) and (21) are all equal. Hene, the probabilities (15){(22) are equal. They also do not depend

on the partiular hoie of a and b, as long as a and b are orthogonal and have onstant norm. Hene

P

QCSK

(E) = P (E

1

js=0) = P ((a+ �)

T

((a + b) + �) < 0)

= P ((a+ ��

0

)

T

((a+ b) + ��

0

) < 0)

= P (jjajj

2

+ �(a+ b)

T

�

0

+ �a

T

�

0

+ �

2

�

0

T

�

0

< 0)

where �

0

and �

0

are vetors of independent standard Gaussian variables.

Now let us express the error probability in terms of the energy per bit E

b

= 2t

s

jjajj

2

=2 = t

s

jjajj

2

and the

noise spetral density N

0

= 2t

s

�

2

. Sine the BER performane does not depend on the partiular hoie of a

and b, let us hoose: a = (jjajj; 0; : : : ; 0) and b = (0; jjajj; 0 : : : ; 0). The formula for the QCSK error probability

reads then:

BER

QCSK

= P

QCSK

(E) = P

 

r

E

b

N

0

(�

1

+ �

2

+

p

2�

1

) +

K

X

i=1

�

i

�

i

< �

p

2

E

b

N

0

!

(23)

where �

i

, �

i

are independent standard Gaussian variables.

Remark 1: Similarly for DCSK one an show that the error probability does not depend on the referene

vetor a and is equal to:

P

DCSK

(E) = P

�

jjajj

2

+ �a

T

(� + �) + �

2

�

T

� < 0

�

;

where again �

i

, �

i

are independent Gaussian variables with zero mean and unity variane. By taking into

aount that for the DCSK sheme E

b

= 2t

s

jjajj

2

and hoosing a = (jjajj; 0; : : : ; 0) we obtain:

BER

DCSK

= P

DCSK

(E) = P

 

r

E

b

N

0

(�

1

+ �

1

) +

K

X

i=1

�

i

�

i

< �

E

b

N

0

!

: (24)
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where �

i

, �

i

are independent standard Gaussian random variables.

From the formulas (23) and (24) it is lear that the performane of both methods degrades with inreasingK.

In fat, for larger K the only modi�ation is the larger number of terms of the form �

i

�

i

, whih inrease the

error probability. These formulas an be used for omputation of the BER urves for the QCSK and DCSK

tehniques. Sine we know the analytial expressions for the densities of �

i

and �

i

we an evaluate the density

of the variables

q

E

b

N

0

(�

1

+�

2

+

p

2�

1

)+

P

K

i=1

�

i

�

i

and

q

E

b

N

0

(�

1

+�

1

)+

P

K

i=1

�

i

�

i

in terms of de�nite integrals. For

the omputation of probabilities (23) and (24) one may use numerial integration methods. In this work these

probabilities have been estimated numerially by onsidering an ensemble of vetors �

1

; : : : ; �

K

, �

1

; : : : ; �

K

,

aording to the normal distribution N(0; 1), and applying the de�nition of probability as relative frequeny

assoiated with an observed event [9℄. This approah is very aurate for moderate values of E

b

=N

0

. Note

that for DCSK there exists an exat expression for bit error rate [24℄, [25℄, whih gives results oiniding with

those obtained using the above proedure.

In Fig. 5 we present a omparison of the theoretial preditions with the simulation results for a QCSK

system based on the Renyi map. One an learly see the perfet agreement. Fig. 6 shows the theoretial

preditions for the BER, omparing QCSK versus DCSK. For low values of E

b

=N

0

, QCSK exhibits better

BER performane than DCSK. For higher E

b

=N

0

and small K, DCSK has lower error probability. For K = 16

the BER urves are lose to eah other, while for larger K QCSK performs better than DCSK in the whole

range of E

b

=N

0

.

C.2 Approximation Using the Central Limit Theorem

The entral limit theorem [23℄ states that if fy

i

g

N

i=1

are statistially independent zero mean random variables

with the same probability density funtion and variane �

2

, and z =

1

p

N

P

N

i=1

y

i

, then the distribution of

z approahes Gaussian distribution with zero mean and variane �

2

as N goes to in�nity. We now use this

result to develop approximate analytial expressions for the BER in QCSK (and DCSK).

In order to apply the entral limit theorem we assume that K is even and we hoose vetors

a =

jjajj

p

K

(1; 1; : : : ; 1); b =

jjajj

p

K

(1;�1; : : : ; 1;�1):

From Lemma 1 it follows that

P

QCSK

(E) = P

0

�

1

p

2

jjajj

2

+

1

p

2

�

K

X

i=1;i�odd

2�

i

+ �

K

X

i=1

�

i

+ �

2

K

X

i=1

�

i

�

i

< 0

1

A

: (25)

Dividing the expression within the parentheses by �

2

and taking into aount that jjajj=� =

p

2E

b

=N

0

we

obtain:

P

QCSK

(E) = P

0

�

K

X

i=1;i�odd

 

r

2E

b

KN

0

(

p

2�

i

+ �

1

+ �

i+1

) + �

i

�

i

+ �

i+1

�

i+1

!

< �

p

2E

b

N

0

)

1

A

Let us de�ne for i = 1; : : : ;K=2

y

i

=

r

2E

b

KN

0

(

p

2�

2i�1

+ �

2i�1

+ �

2i

) + �

2i�1

�

2i�1

+ �

2i

�

2i

;

and

z =

r

2

K

K=2

X

i=1

y

i

:
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y

i

are zero mean random variables with the same distribution and variane: �

2

y

= 2 + 8E

b

=(KN

0

). It follows

that:

P

QCSK

(E) = P

 

r

K

2

z < �

p

2E

b

N

0

!

= P

�

z < �

2E

b

KN

0

�

:

For large K, the random variable z has approximately Gaussian distribution with variane �

y

, thus the

probability of error an be omputed as

P

QCSK

(E) =

1

2

erf

 

2E

b

KN

0

p

2�

y

!

=

1

2

erf

 

�

4

N

0

E

b

+K

N

2

0

E

2

b

�

�1=2

!

; (26)

where erf(�) is the omplementary error funtion [23℄.

For DCSK this method gives the following expression:

P

DCSK

(E) =

1

2

erf

 

�

4

N

0

E

b

+ 2K

N

2

0

E

2

b

�

�1=2

!

: (27)

These approximations are valid for large orrelation times K. Sine the erf is a stritly dereasing funtion

it follows that for large K the QCSK method is better than DCSK in terms of error probability.

Fig. 6 shows the BER urves obtained by plotting formulas (26) and (27), for K = 2; 16; 64. As it an be

seen in Fig. 6(), the approximate results based on the entral limit theorem and the exat urves tend to

get loser for K = 64. For smaller values of K the error due to the assumption that the distribution of z is

Gaussian auses unaeptable di�erenes (see Fig. 6(b) and espeially Fig. 6(a)). This fat is demonstrated

by Fig. 7 showing that the distribution of

P

k

i=1

y

i

, for small k, is far from Gaussian.

D. QCSK versus DCSK

Summarizing, QCSK may be onsidered equivalent to two DCSK systems: the �rst using the referene signal



x

(t) and the seond using the orthogonal signal 

y

(t) whih is restored at the reeiver from the referene part

of the transmitted signal. The advantage of the proposed QCSK sheme is that there is no need to send

the orthogonal signal over the hannel as its estimate an be reprodued from the reeived referene signal.

The prie is the higher omplexity as QCSK requires the generation of the omplementary signal in both the

transmitter and the reeiver. The BER performanes of the DCSK and QCSK shemes are similar but QCSK

has double data rate. In fat the QCSK symbol onsists of two bits as opposed to one bit in DCSK. Sine

the two signals oupy the same bandwidth it follows that QCSK has higher spetral eÆieny with respet

to DCSK.

VI. Extension to M-ary Constellations

In general QCSK may be extended to M -symbol onstellations. For example, this an be obtained by

onsidering the set of omplex numbers: m

s

= e

i2s�=M

; s = 1; : : : ;M . This hoie gives a haos-based version

of M -ary PSK (Phase Shift Keying). Moreover, if the onstellation signals are not restrited to lie on a irle

one an design a haoti version of QAM (Quadrature Amplitude Modulation) [9℄. In this ase however the

onditions E

b

= onst is no longer satis�ed.

VII. Conlusions

In this paper we have proposed a multilevel haos-based modulation sheme alled QCSK (Quadrature

Chaos Shift Keying). The QCSK sheme is derived from DCSK and exhibits similar BER performane as

DCSK but double data rate for a given bandwidth (or half bandwidth for given data rate), resulting in

an inreased spetral eÆieny. The drawbak onsists in an inreased omplexity of both transmitter and

reeiver.
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IX. Appendix A

In this Appendix we prove two lemmas, whih are neessary for showing that the performane of the QCSK

modulation method does not depend on the partiular hoie of the orthogonal signals a and b, as long as

jjajj = jjbjj = onst.

The following lemma shows that a linear transformation de�ned by an orthonormal matrix transforms a

vetor of independent Gaussian variables into a vetor of random variables with the same properties.

Lemma 2: Let us assume that � = (�

1

; : : : ; �

n

) is a vetor of independent Gaussian variables with zero mean

and variane �

2

. Let T be an orthonormal matrix, i.e. T

�1

= T

T

and rows of T have norm 1 (

P

n

j=1

T

2

ij

= 1

for i = 1; : : : ; n). Let �

0

= T�. Then �

0

is a vetor of independent Gaussian variables with zero mean and

variane �

2

.

Proof: It is well known that a linear ombination z = a

1

x

1

+ � � � + a

n

x

n

of zero mean independent

Gaussian random variables x

i

, eah with variane �

2

is itself a zero mean Gaussian variable with variane

�

2

z

= (a

2

1

+ � � �+a

2

n

)�

2

. It follows that �

0

i

=

P

n

j=i

T

ij

�

j

is a zero mean random Gaussian variable with variane

�

2

�

0

i

=

n

X

j=i

T

2

ij

�

2

= �

2

:

From the assumptions it follows that the joint probability density funtion of �

1

: : : ; �

L

is equal to

p

�

1

::: ;�

L

(�

1

; : : : ; �

L

) =

n

Y

i=1

1

p

2��

exp

�

�

�

2

i

2�

2

�

:

We will show independene of �

0

i

using the theorem on reversible transformations of random vetors [27℄.

Aording to this theorem the joint density funtion of �

0

= f(�) (where f is reversible, g = f

�1

) an be

omputed as

p

�

0

1

::: ;�

0

L

(�) = jDg(�)jp

�

1

::: ;�

L

(g

1

(�); : : : ; g

n

(�));

where � = (�

1

; : : : ; �

n

).

In our ase �

0

= f(�) = T�, � = g(�

0

) = T

T

�, the Jaobian of g is onstant and its determinant is

jDg(�)j = jT

T

j = 1.

p

�

0

(�) =

n

Y

i=1

1

p

2��

exp

�

�

g

2

i

(�)

2�

2

�

=

1

(

p

2��)

n

exp

�

�

P

n

i=1

g

2

i

(�)

2�

2

�

=

1

(

p

2��)

n

exp

�

�

jjT

T

�jj

2

2�

2

�

=

1

(

p

2��)

n

exp

�

�

jj�jj

2

2�

2

�

=

n

Y

i=1

1

p

2��

exp

�

�

�

2

i

2�

2

�

=

n

Y

i=1

p

�

0

i

(�

i

):

Sine the joint density funtion of �

0

= (�

0

1

; �

0

2

; : : : ; �

0

n

) an be fatorized in the form shown above it follows

that the random variables �

0

i

are independent.

The next lemma states that the distributions of random variables appearing in the formulas (15){(22) do

not depend on a and b, as long as a and b are orthogonal and their Eulidean norms are equal and �xed.

Lemma 3: Let � = (�

1

; : : : ; �

n

) and � = (�

1

; : : : ; �

n

) be vetors of independent Gaussian variables with zero

mean and variane �

2

. Let n � 2, a = (a

1

; : : : ; a

n

) and b = (b

1

; : : : ; b

n

). Let us assume that jjajj = jjbjj is

onstant and a

T

b = 0. Then the random variable de�ned as

z = (a+ �)

T

((a+ b)=

p

2 + �) (28)
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has a distribution whih does not depend on a and b.

Proof: Let  = 1=

p

2. The distribution under onsideration an be written as follows:

z = jjajj

2

+ (a+ b)

T

� + a

T

� + �

T

�

We skip the onstant term jjajj

2

. We show that the following distributions are the same

z =(a+ b)

T

� + a

T

� + �

T

�; (29)

�z =jjajj(�

1

+ �

2

) + jjajj�

i

+ �

T

�: (30)

The �rst distribution is obtained using arbitrary vetors a and b, while the seond is obtained for a =

(jjajj; 0; : : : ; 0), b = (0; jjajj; 0; : : : ; 0). First we split the random vetor � into the sum of two independent

random vetors, with omponents being random independent Gaussian variables with the same variane as �.

� =

1

p

2

(

~

� +

�

�) = (

~

� +

�

�):

After this substitution z an be rewritten as

z = (a

T

� + b

T

�) + a

T

(

~

� +

�

�) + �

T

(

~

� +

�

�) = (a

T

� + b

T

� + a

T

~

� + a

T

�

� + �

T

~

� + �

T

�

�): (31)

Let e

1

=

a

jjajj

and e

2

=

b

jjbjj

. Let us hoose vetors e

3

; : : : ; e

n

in suh a way that e

1

; : : : ; e

n

is an orthonormal

base in R

n

. Also, we de�ne the square matrix T = (e

1

; e

2

; : : : e

n

)

T

. We now de�ne �

0

= T�,

~

�

0

= T

~

�,

�

�

0

= T

�

�.

Sine T is an orthonormal matrix it follows from Lemma 2 that �

0

,

~

�

0

,

�

�

0

are vetors of independent random

variables with same distribution as �,

~

�,

~

�.

We have the following relations:

� = T

T

�

0

;

~

� = T

T

~

�

0

;

�

� = T

T

�

�

0

;

a

T

� = a

T

T

T

�

0

= a

T

e

1

�

0

1

= jjajj�

0

1

;

b

T

� = jjajj�

0

2

; a

T

~

� = jjajj

~

�

0

1

; a

T

�

� = jjajj

�

�

0

1

;

�

T

~

� = (T

T

�

0

)

T

T

T

~

�

0

= �

0

T

TT

T

~

�

0

= �

0

T

~

�

0

;

�

T

�

� = �

0

T

�

�

0

:

from whih we obtain �nally

z = (jjajj�

0

1

+ jjajj�

0

2

+ jjajj

~

�

0

+ jjajj

�

�

0

+ �

0

T

~

�

0

+ �

0

T

�

�

0

) = jjajj(�

0

1

+ �

0

2

) + jjajj�

0

1

+ �

0

T

�

0

;

where �

0

= (

~

�

0

+

�

�

0

) is a vetor of independent random Gaussian variables with variane �

2

. Thus we have

shown that the distributions (29) and (30) are the same.
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