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Abstract— In this work we study possibilities of rigorous analy-
sis of piecewise linear systems using Poincaré map technique and
interval methods. We show that successful analysis can be carried
out provided that the Poincaré map is continuous in the region
containing the attractor. In particular, complete classification of
short periodic orbits embedded within the attractor is possible.

I. INTRODUCTION

The method of Poincaré map is commonly used in analysis
of continuous systems. In this work we describe methods for
rigorous investigations of Poincaré maps defined by piecewise
linear systems. For piecewise linear systems the planes sepa-
rating linear regions are the most natural choice for the hyper-
planes defining the Poincaré map. For this choice,however, it
may happen that the Poincaré map is not continuous or even
is not defined for the region of interest.

In [1] we have shown that for the Chua’s circuit with pa-
rameter values for which the double-scroll attractor is observed
the Poincaré map is not continuous. In this paper, we consider
the Chua’s circuit displaying the Roessler-type attractor. In
this case the Poincaré map is well defined and continuous in
the region containing the numerically observed attractor and
a more complete analysis of the system is possible.

Let us consider a simple third order piecewise linear elec-
tronic circuit [2] described by the following state equation

C1ẋ1 = (x2 − x1)/R − g(x1),
C2ẋ2 = (x1 − x2)/R + x3, (1)

Lẋ3 = −x2 − R0x3,

where g(z)=Gbz + 0.5(Ga − Gb)(|z+1| − |z−1|) is a three
segment piecewise linear characteristics.

The circuit is studied with the following parameter values
(after appropriate parameter rescaling)

C1 = 1, C2 = 7.65, Ga = −3.4429, Gb = −2.1849, (2)

L = 0.06913, R = 0.33065, R0 = 0.00036,

for which the Roessler-type attractor is observed in computer
simulations (compare Fig. 1(a)). The double-scroll attractor
(see Fig. 1(b)) exists for C2 = 9.3515, all other parameters
being the same as above. For the double-scroll attractor discon-
tinuity of the Poincaré map can be seen in the projection onto
the plane (x1, x2). Some trajectories turn close to the plane
x1 = 1, which means that intersections with this plane are

not always transversal (compare Fig. 1(b)). On the other hand
for the Roessler-type attractor in Fig. 1(a) the intersections are
transversal and consequently the Poincaré map is continuous
on the attractor.
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Fig. 1. Computer simulations of Chua’s circuit, (a) Roessler-type attractor
for C2 = 7.65, (b) double-scroll attractor for C2 = 9.3515

Another problem with the double-scroll attractor is that the
stable manifold of the origin intersects the attractor. For points
belonging to the stable manifold the Poincaré map is not
defined (trajectories starting from the stable manifold never
come back to the planes separating the linear regions).

In the next section we show how to rigorously analyse the
system in case the Poincaré map is continuous.



II. RIGOROUS ANALYSIS OF THE SYSTEM

The state space R
3 can be divided into three open regions

U1 = {x ∈ R
3 : x1 < −1}, U2 = {x : |x1| < 1} and U3 =

{x : x1 > 1} separated by planes Σ1 = {x : x1 = −1} and
Σ2 = {x : x1 =1}. In the regions Ui the system is linear, the
state equation can be written as: ẋ = Ai(x−pi), where Ai are
matrices with real coefficients, pi are vectors, and the solution
has the form

ϕ(t, x) = eAit(x − pi) + pi.

A. Poincaré map

Let Σ = Σ1 ∪Σ2. The Poincaré map P : Σ �→ Σ is defined
as

P (x) = ϕ(τ(x), x), (3)

where ϕ(t, x) is the trajectory of the system based at x, and
τ(x) is the time needed for the trajectory ϕ(t, x) to reach Σ.
Usually a Poincaré map is defined by a single hyperplane. If
the set defining the Poincaré map is composed of two or more
planes the map is sometimes called a generalized Poincaré
map.

B. Evaluation of the Poincaré map

For rigorous evaluation of P we use analytical formulas
for solutions of linear systems. Let us assume that x is the
rectangle enclosed in one of the planes Σ1, Σ2. We assume
that trajectories based at x ∈ x enter the linear region where
the state equation has the form ẋ = A(x − p). First, we find
t1 such that ϕ(s, x) �∈ Σ for all x ∈ x and s ∈ (0, t1]. Then
we find t2 > t1 such that for all x ∈ x the point ϕ(t2, x)
belongs to another linear region. It follows that the interval
t = [t1, t2] is the enclosure of the return time for all points
in x, i.e. t ⊃ {τ(x) : x ∈ x}. We find the box

R = eAt(x − p) + p. (4)

In order to obtain a narrow enclosure we use the mean value
form for the evaluation of the above formula. For the details
see [3]. Finally, the enclosure y of {P (x) : x ∈ x} is computed
as the intersection of R with Σ.

The Jacobian of P at x ∈ Σ can be computed using the
following formula (compare [4]):

P ′(x) =
(

I − A(y − p)eT
1

eT
1 A(y − p)

)
eAt, (5)

where t = τ(x) is the return time, y = P (x), e1 = (1, 0, 0)T

and I is the 3 × 3 identity matrix. The above formula holds
if the trajectory ϕ(t, x) intersects Σ transversally at points x
and y.

The enclosure of {P ′(x) : x ∈ x} is computed using the
formula (5) with the interval quantities t and y found in the
computation of P (x).
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Fig. 2. (a) computer generated trajectory of the Poincaré map P , (b) the
trapping region composed of two polygons

C. Trapping region

In the first step of the rigorous analysis we locate the
trapping region containing the numerically observed attractor.
We say that a set A is a trapping region, if it is positively
invariant, i.e. P (x) ∈ A for all x ∈ A. As was mentioned
before if the Poincaré map is not continuous on the attractor
it is not possible to prove the existence of such a region using
techniques described here.

A computer generated trajectory of the Poincaré map is
shown in Fig. 2(a). The trapping region is found by construct-
ing a set of polygons enclosing the trajectory and modifying
corners’ positions by hand to satisfy the condition for the
trapping region. The polygons found have 16 and 36 edges,
respectively. In order to prove that the region A is positively
invariant it is sufficient to check that the image of its border
is enclosed in A and that the Poincaré map is well defined on
A. This can be done by covering the region by a number of
boxes, computing image of each box and checking whether a
proper condition is satisfied. We have proved that the image
of the first polygon is enclosed in the second one and that
the image of the second polygon is enclosed in the first one,



thus showing that the set composed of the two polygons is a
trapping region for the Poincaré map.

D. Graph representation

In the second step, we find the graph representation of the
dynamics of the system in the trapping region (see [5] for
details). The trapping region is covered by ε–boxes, i.e. sets
of the form

v = [k1ε1, (k1 + 1)ε1] × [k2ε2, (k2 + 1)ε2], (6)

where ki are integer numbers, εi are fixed positive real num-
bers, and ε = (ε1, ε2). ε–boxes define vertices and admissible
connections between boxes define edges of the graph.

The computation results are shown in Table I. The trapping
region is covered by 6067 ε–boxes, with ε = (0.001, 0.0025).
An enclosure of the image of each box is found and the set E
composed of 36090 nonforbidden transitions between boxes
is constructed:

E = {(i, j) : P (vi) ∩ vj �= ∅}.
Next, we reduce the graph by removing vertices correspond-

ing to boxes having empty intersection with the invariant part
of the trapping region (see also [6], [7], [5]). This results in
the covering composed of 1722 boxes with 10676 admissible
connections.

Computation of the invariant part is combined with the sub-
division technique, where invariant part is found successively
for finer divisions (see Table I).

TABLE I

THE NUMBER OF ε–BOXES AND CONNECTIONS FOR DIFFERENT ε.

covering invariant part
ε #V #E #V #E t [s]

(0.001, 0.0025) 6067 36090 1722 10676 1199.51
(0.001, 0.0025)/2 6888 39721 2882 16463 2138.36
(0.001, 0.0025)/22 11528 65476 5752 32691 3811.76
(0.001, 0.0025)/23 23008 130331 11891 67485 7662.16
(0.001, 0.0025)/24 47564 269741 24482 139553 15480.82

E. Return time

Once the graph is generated, we can find the bounds for
the return time for all points belonging to the attractor. Let
τ i be the interval containing return times for points in the
box vi (τ i is found in the process of finding the image of
vi under Poincaré map). The return time τ for the whole set⋃

vi is computed as a hull of intervals τ i, i.e. τ =
⋃

τ i.
Starting with the covering composed of 24482 boxes of size
(0.001, 0.0025)/24, we have shown that the return time for
all points belongs to T1 = τ = [1.1986, 4.3658]. Using the
information on admissible connections between boxes we can
obtain bounds for the return time of the n–th iteration of the
Poincaré map. The results are collected in Table II.

It is clear that the average return time between two crossings
of the set Σ belongs to the interval Tn/n for each n. For
example for n = 1000 we obtain:

τaver ∈ [3.2704, 3.3141]. (7)

TABLE II

RIGOROUS ESTIMATES Tn FOR TIME NEEDED TO COMPLETE n

ITERATIONS OF THE POINCARÉ MAP.

n Tn Tn/n

1 [1.1986,4.3658] [1.1986,4.3658]
2 [5.1574,7.6279] [2.5787,3.8140]
3 [8.3655,11.5561] [2.7885,3.8521]
4 [12.1315,13.9024] [3.0329,3.4756]
5 [14.8024,17.6637] [2.9605,3.5328]
6 [18.6087,20.9189] [3.1014,3.4865]
7 [21.5266,24.8744] [3.0752,3.5535]
8 [25.3095,27.2978] [3.1636,3.4123]
9 [27.6289,31.0721] [3.0698,3.4525]

10 [31.4984,34.2038] [3.1498,3.4204]
11 [34.5306,38.1560] [3.1391,3.4691]
12 [38.4023,40.8458] [3.2001,3.4039]
13 [40.6944,44.7794] [3.1303,3.4446]
14 [44.6086,47.4692] [3.1863,3.3907]
15 [47.2592,51.4259] [3.1506,3.4284]
16 [51.2181,54.1062] [3.2011,3.3817]

100 [326.08,332.40] [3.2608,3.3240]
1000 [3270.4,3314.1] [3.2704,3.3141]

It follows that the period of the orbit having n intersections
with Σ belongs to the interval [3.2704 · n, 3.3141 · n].

F. Periodic orbits

Using the graph representation we can also find all low-
period cycles of the Poincaré map. We start by finding all
period–n cycles in the graph. Each cycle may correspond to
a periodic orbit of the dynamical system. In order to prove
the existence of a periodic orbit or to prove that there are no
periodic orbits corresponding to this cycle we use the Hansen–
Sengupta operator H, which is a standard interval tool for
proving the existence of zeros of nonlinear maps (compare [8],
[9]). We evaluate the interval operator H on the interval vector
z, corresponding to the cycle under study. If z ∩ H(z) = ∅,
then there is no period–n orbits in z. If H(z) ⊂ z, then there
is exactly one period–n orbit inside z.

In none the two above conditions is fulfilled we try to
proceed by increasing the size of z. Namely, we set the new
value of z to be the convex hull of z and (1+ε)H(z)−ε H(z).
If the diameter of H(z) is larger than the diameter of z, we
stop the computations and try again with a finer grid.

The computation time depends on the number of period–n
cycles in the graph. In order to reduce this number we find the
cycles of the graph for a finer division, and then construct the
graph for boxes two (or more) times larger in each direction.

We start with the covering by boxes of size
(0.001, 0.0025)/23. After finding all cycles of length n
we increase the box size 8 times in each direction obtaining
a smaller number of cycles. In Table III we show the results
of the search for short periodic orbits. Qn is the number of
period–n cycles, Pn is the number of fixed points of Pn, Cn

is the number of period–n cycles in the graph for the initial
box size, and Dn is the number of period–n cycles for which
the existence was verified. We have found all periodic orbits
having at most 16 intersections with the set Σ (see Fig. 3).
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Fig. 3. Short periodic orbits of the Chua’s circuit, n is the number of intersections with Σ

TABLE III

PERIODIC ORBITS OF THE POINCARÉ MAP

n Qn Pn Cn Dn t [s]

2 1 2 5 1 0.67

4 1 6 123 7 4.07

6 0 2 221 2 2.19

8 1 14 14780 62 63.04

10 0 2 9031 3 4.47

12 2 30 1968941 421 650.99

14 0 2 371209 5 14.08

16 3 62 232528160 30388 38479.85

It is clear that there are no periodic orbits with odd number
of intersection with Σ. One should note that there are no
periodic orbits with 6, 10 and 14 intersections with the set Σ.

Since the average return time belongs to the interval
[3.2704, 3.3141] we can claim that all periodic orbits with
period shorter than 58 are found (3.2704 · 18 > 58).

III. CONCLUSIONS

In this paper we have studied a possibility of rigorous
investigation of piecewise linear system by means of the com-
bination of the Poincaré map technique and interval methods.
We have shown that if the Poincaré map is continuous in
the region containing the numerically observed attractor it is
possible to find a trapping region and all low-period cycles for
the system.

As an example, we have considered the third-order elec-
tronic circuit with parameter values for which the Poincaré
map is continuous in the region containing the numerically

observed attractor. We have located a positively invariant
region in the domain of the Poincaré map. For a very fine
division of the trapping region into boxes we have found
the graph representation of the dynamics of the system.
Using this information we have found a very good rigorous
approximation for the average return time. We have also found
all periodic orbits with period n ≤ 16 of the generalized
Poincaré map enclosed in the trapping region.
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