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1. Introduction

The technique of Poincaré map is often used in analysis of
continuous–time nonlinear systems. This is a general method
which reduces many problems concerning dynamical systems
with continuous time to the corresponding problem for dy-
namical systems with discrete time. In this method one con-
siders the return map which arises on a transversal surface of
codimension 1. In this paper, we address the problem if it
is feasible to make the analysis via the Poincaré map rigor-
ous. We discuss what kind of problems one could face in an
attempt to compute the Poincaré map rigorously.

Rigor is obtained by employing interval arithmetic [3]. In-
terval computations make it possible to use a computer for
calculation of rigorous results, by ensuring that the results
obtained enclose the true solution (together with the round-
ing errors). In this paper, we use boldface to denote intervals,
interval vectors and matrices, and the usual math italics to
denote point quantities.

The image of a given set under the Poincaré map can be
computed rigorously only if the Poincaré map is continuous
on this set. Usually the Poincaré map is not defined every-
where. It is not defined for points, trajectories of which never
come back to the hyperplane defining the Poincaré map. An
example is a point belonging to a stable manifold of an equi-
librium of the continuous time system — its trajectory con-
verges to the fixed point and hence never comes back to the
Poincaré plane. Even if the Poincaré map is well defined it
does not have to be continuous. The Poincaré map is not con-
tinuous at points for which the flow is parallel to the Poincaré
plane at this point or at the image.

In a close neighborhood of such a discontinuity point rig-
orous evaluation of the Poincaré map becomes very difficult.
Closer to the discontinuity point, the sets which have to be
studied become smaller, and the computation time becomes
larger. Practically in the regions close to the discontinuity
points the rigorous evaluation of the Poincaré map is not fea-
sible. Understanding this problem and knowing the regions,
where the Poincaré map is not continuous is the starting point
of the rigorous study.

As an example to illustrate these problems we consider
the Chua’s circuit, a simple third–order dynamical system.

We present methods for rigorous computation of an enclo-
sure of the image of a given set under the Poincaré map. We
also show how to compute the Jacobian of the Poincaré map.
For the Chua’s circuit we find the region, where the Poincaré
map is well defined and continuous. In the region, where the
Poincaré map can be rigorously evaluated we find all period–
2 orbits.
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Figure 1: Electronic circuit (a) and characteristics of the non-
linear resistor (b)

2. Poincaré map for the Chua’s circuit

In this work we present a rigorous study of the Poincaré
map associated with the third–order electronic circuit (see
Fig. 1(a)), defined by the following set of ordinary differential
equations [1]

C1ẋ1 = G(x2 − x1) − g(x1),

C2ẋ2 = G(x1 − x2) + x3, (1)

Lẋ3 = −x2 − R0x3,



where g(z) = Gbz + 0.5(Ga − Gb)(|z + 1| − |z − 1|) is a
three-segment piecewise-linear function (see Fig. 1(b)).

The system is considered with the following parameter val-
ues: C1 = 1, C2 = 9.3515, Ga = −3.4429, Gb = −2.1849,
L = 0.06913, R = 0.33065, R0 = 0.00036, for which
chaotic behavior is observed in computer simulations.

The state space R
3 can be divided into three open regions

U1 = {x ∈ R
3 : x1 < −1}, U2 = {x : |x1| < 1} and U3 =

{x : x1 > 1} separated by planes Σ1 = {x : x1 = −1} and
Σ2 = {x : x1 =1}. In the regions Ui the system is linear, the
state equation can be written as: ẋ = Ai(x − pi), where Ai

are matrices with real coefficients, and pi are vectors, and the
solution has the form

ϕ(t, x) = eAit(x − pi) + pi.

2.1. Generalized Poincaré map

For a standard Poincaré map one considers a single surface
of codimension 1. A generalized Poincaré map is defined by
a number of surfaces [4]. Let Σ = Σ1 ∪ Σ2. The generalized
Poincaré map H : Σ 7→ Σ is defined as

P (x) = ϕ(τ(x), x), (2)

where ϕ(t, x) is the trajectory of the system based at x, and
τ(x) is the time needed for the trajectory ϕ(t, x) to reach Σ.

The planes separating linear regions are the most natural
choice for defining the Poincaré map for piecewise linear sys-
tems.

2.2. Evaluation of Poincaré map

For rigorous evaluation of P we use analytical formulas for
solutions of linear systems. Let us assume that x is a rectangle
enclosed in one of the planes Σ1, Σ2. In the language of
interval arithmetic x is an interval vector. We assume that
trajectories based at x ∈ x enter the linear region where the
state equation has the form x′ = A(x− p). Now we describe
the procedure for rigorous computation of the enclosure of
the set {P (x) : x ∈ x}. In the first step of the procedure
we find the enclosure of the return time for all points in x,
i.e. the interval t ⊃ {τ(x) : x ∈ x}. In order to perform
this task we find t1 such that ϕ(s, x) 6∈ Σ for all x ∈ x and
0 < s ≤ t1. This ensures that the trajectory based at each
point in x stays in one linear region for s ≤ t1. Then we find
t2 > t1 such that for all x ∈ x the point ϕ(t2, x) belongs
to another linear region. It follows that the intersection of
each trajectory with Σ happens before t2 and the return time
τ(x) ∈ [t1, t2] for all x ∈ x. For efficient computations the
interval τ = [τ1, τ2] should be as tight as possible. Finally,
we use analytic solutions to compute ϕ(τ(x),x). We find the
interval vector

R = eAt(x − p) + p. (3)

All the computations are done in interval arithmetic and
hence R ⊃ {ϕ(τ(x), x) : x ∈ x}. Finally, the enclosure y

of P (x) is computed as the intersection of R with Σ, which
is equivalent to taking the projection of the interval vector R

onto the plane (x2, x3). For the details see [2].
The Jacobian of P at x ∈ Σ can be computed using the

following formula (compare [4]):

P ′(x) =

(

I −
A(y − p)eT

1

eT
1
A(y − p)

)

eAt, (4)

where t = τ(x) is the return time, y = P (x), e1 = (1, 0, 0)T

and I is the 3 × 3 identity matrix. The above formula holds
if the trajectory ϕ(t, x) intersects Σ transversally at points x
and y.

The enclosure of P ′(x) is computed using the formula (4)
with the interval quantities y, t found in the computation of
P (x).
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Figure 2: Trajectory of the generalized Poincaré map P , x3 >
0 ⇒ x ∈ Σ1, x3 < 0 ⇒ x ∈ Σ2

3. Analysis of the generalized Poincaré map

In Fig. 2 we show a computer generated trajectory of P .
Since the numerically observed attractor intersects the plane
Σ1 at points x3 > 0 and it intersects the plane Σ2 at points
x3 < 0 it is possible to plot the trajectory of the Poincaré
map in one figure in spite of the fact that the set Σ consists of
two hyperplanes. Now we briefly describe the action of the
Poincaré map on points belonging to the attractor for x ∈ Σ2

(the lower part of the Fig. 2). The intersection of the attractor
with the plane Σ2 consists of four components I1, I2, I3 and



I4. The sets I1 and I2 (i.e. the left part of the plot, contained
in the region {x2 < −1.4, x3 < 0}) form a line. Trajectories
starting here enter the central linear region U2. Points x ∈ I1

reach the plane Σ1 and their image forms a smaller spiral in
the upper halfplane (P (x) ∈ J3). Points x ∈ I2 return back
to the Σ2 plane and their image forms the larger spiral in the
lower halfplane (P (x) ∈ I4). The right part of the plot is
composed of two spirals (I3 and I4). Trajectories starting
here enter the linear region U3 and return back to Σ2. Their
images form the left part of the plot (P (x) ∈ I1 ∪ I2 for
x ∈ I3 ∪ I4).

These transitions can be written in the following way I1 →
J3, I2 → I4, I3, I4 → I1 ∪ I2. Similarly for the plane Σ1 we
have: J1 → I3, J2 → J4, J3, J4 → J1 ∪ J2.

From the discussion presented above one can easily iden-
tify one region in Σ2, where the rigorous evaluation of the
Poincaré map may by difficult or even impossible. The border
between the sets I1 and I2 is composed of points for which
trajectory intersects Σ1 tangentially. At this border rigorous
computation using the methods given above is not possible.
Observe that the set I1 ∪ I2 is connected, and hence one can
expect that there are points belonging to the attractor at which
rigorous analysis is not possible.
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Figure 3: Set V — boxes belonging to the rectangle
[−0.4, 0.3]× [−5, 0] for which the Poincaré map can be com-
puted rigorously

For the Chua’s circuit we start the analysis by finding the
subsets of Σ, where the Poincaré map can be rigorously
evaluated. Since the vector field defining the Chua’s cir-
cuit is symmetric with respect to the origin it is sufficient to
make the analysis for Σ2. The rectangle {1} × [−0.4, 0.3]×
[−5, 0] ⊂ Σ2 contains the numerically observed attractor

(compare Fig. 2). This rectangle is covered by boxes of the
form {1} × [i/400, (i + 1)/400] × [j/40, (j + 1)/40]. The
boxes for which we were able to compute the image under the
Poincaré map are plotted in Fig. 3. We denote this set by V .

The set of boxes for which the computation was unsuc-
cessful is composed of three parts. Vertical line of boxes
contains a set of points in the state space where the vector
field is parallel to the plane Σ2 (ẋ1 = 0 and x1 = 1, i.e.,
x2 = 1 + Ga/G ≈ −0.1383).

The part in the lower left corner contains a curve in Σ2

of points x for which the intersection of the trajectory with
the plane Σ1 is not transversal. This curve separates points
for which P (x) ∈ Σ2, from points for which P (x) ∈ Σ1.
Clearly the Poincaré map is not continuous on the curve and
if a box contains a point from this curve evaluation of the
Poincaré map on this box is not possible.

The third part is the spiral on the right hand side. It contains
points for which the intersection of the trajectory with the
plane Σ2 at P (x) is not transversal (the spiral is the preimage
of the vertical line in Σ2 for which ẋ1 = 0). The region in
the center of the spiral contains the intersection of the stable
manifold of the equilibrium enclosed in the region U3 with
the plane Σ2. The Poincaré map is not defined at this point.
Rigorous evaluation of the Poincaré map in the neighborhood
of this point is difficult since trajectories starting close to this
point spend long time in the neighborhood of the unstable
equilibrium.

One can see that for the Chua’s circuit all types of the phe-
nomena leading to problems with rigorous evaluation of the
Poincaré map occur.

The first part, i.e. the vertical line is not very important
for the analysis, since the attractor does not intersect this line.
Unfortunately, the other two parts intersect the numerically
observed attractor and this fact limits the completeness of the
results which can be obtained by studying the system rigor-
ously, even if we limit the analysis to a neighborhood of the
numerically observed attractor.

3.1. Periodic orbits

In the second step of our study we would like to find all
short cycles of the Poincaré map. It is well known that inter-
val Newton method and bisection technique can be success-
fully used for finding all low period cycles of discrete time
systems. Since the Poincaré map is not continuous every-
where, we cannot find all its short periodic orbits. It should
however be possible to find all periodic orbits enclosed in the
region for which the Poincaré map can be evaluated.

From the definition of generalized Poincaré map it follows
that all periodic points must have an even period.

Using the generalized bisection and the interval New-
ton method we have found all period-2 orbits, i.e. the
shortest orbits possible of the generalized Poincaré map en-
closed in the set V . We have proved that there is only one



period-2 orbit in this region. The periodic point belongs to
the interval vector (−0.33311448212,−0.33311448210) ×
(−4.2398951156,−4.2398951154). We have also shown
that the length of the corresponding periodic orbit of
the continuous time system belongs to the interval
(7.380584397, 7.380584399).

Symmetrically, there is another period-2 orbit intersecting
the plane Σ1.

Further analysis of the Poincaré map on the entire set V is
very time consuming. We have not managed to find all peri-
odic orbits of period 4. In order to reduce the time complex-
ity of the problem we limit our investigations to the region
containing the numerically observed attractor. To this end
we cover the numerically generated trajectory of the Poincaré
map by 15346 boxes of size 0.001 × 0.01 (see Fig. 4). For
204 boxes in 16 connected components the computation of
the Poincaré map was unsuccessful. These boxes are located
close to the intersection of the computer generated attractor
with the set of points on Σ where the Poincaré map is not de-
fined or is not continuous. The set W is defined as the union
of boxes, for which computation was successful.
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Figure 4: Covering of the computer generated trajectory of
the Poincaré map by boxes

In Fig. 5 we show the invariant part of the set W . It is found
be removing boxes which has empty intersection with P (W )
and boxes whose image has empty intersection with W . The
procedure is continued until no boxes can be removed.

The number of boxes obtained in this way is significantly
smaller than for the set V . Such reduction makes is possible
to find all cycles for larger period. The results on this study
will be reported elsewhere.
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Figure 5: Invariant part

4. Conclusions

In this paper we have studied a possibility of rigorous in-
vestigation of the Poincaré map associated with the Chua’s
circuit. We have identified regions where rigorous evalua-
tion of the Poincaré map is not possible. Since these regions
intersect the numerically observed attractos it is plausible to
believe that full analysis of the Chua’s circuit may be not pos-
sible. We have proved that in the region where the numerical
procedure succeeds in computation of the Poincaré map there
is only one pair of symmetric period–2 orbits.
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