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Abstract

We investigate the stability of synchronous motion in an array of

bi{directionally coupled electronic circuits. We compute Lyapunov

exponents of the generic variational equation associated with direc-

tions transversal to the synchronization subspace. Using Lyapunov

exponents we derive conditions for the coupling strength for which

the stable synchronous solution exists. We also �nd the limit on the

size of the network, which can sustain stable synchronous motion.

Theoretical results are compared with the results of numerical exper-

iments.
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1 Introduction

Networks of discretely coupled oscillators provide a versatile model for a

variety of phenomena observed in real systems in such areas as physics, bi-

ology and medicine [Perez-Mu~nuzuri et al. 1997]. Dynamics of such sys-

tems is one of very lively studied topics [Kaneko 1990, Perez-Mu~nuzuri et al.

1995, Ogorza lek et al. 1995, Ogorza lek et al. 1996].

Depending on dynamics of individual oscillators in the network and the

type and strength of coupling between them a variety of interesting behaviors

can be observed, including hyper{switching and clustering [Kaneko 1990],

attractor crowding and various kinds of spatial, temporal or spatio{temporal

ordered structures referred to as self{organization [Haken 1994].

Among various types of dynamical behaviors occurring in coupled sys-

tems is the synchronization behavior when some or all cells behave in the

same manner (Pyragas [1992] introduced the notions of weak and strong

synchronization to distinguish these two cases).

Stability of the synchronous motion becomes a very important prob-

lem. In this paper we study the stability of synchronous motion in a one{

dimensional lattice of bi{directionally coupled chaotic circuits.

2 Dynamics of the Network

Let us consider a one{dimensional array composed of simple third{order

electronic oscillators (Chua's circuits) shown in Fig. 1a.

The circuits are coupled bi-directionally by means of two resistors cross-

connected between the capacitors C

1

and C

2

of the neighboring circuits.

Every circuit is connected with two nearest neighbors. The dynamics of

the one{dimensional lattice composed of n circuits can be described by the

following set of ordinary di�erential equations:
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). f is a �ve{segment piecewise linear function (compare
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Figure 1: (a) Nonlinear oscillator and its connection to the neighbors, (b) A

�ve{segment piecewise linear function.
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Fig. 1b):
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Observe that Eq. (1) de�nes a di�usive coupling where the \error" signal

for the last variable z

i�1

� z

i

and z

i+1

� z

i

is injected into the �rst equation

and vice versa. In our study we use typical parameter values for which an

isolated circuit generates chaotic oscillations | the \double scroll" attractor

(C

1

= 1=9F , C

2

= 1F , L = 1=7H, G = 0:7S, m

0

= �0:8, m

1

= �0:5,

m

2

= 0:8, B

p

1

= 1, B

p

2

= 2). For the integration of the system the fourth-

order Runge-Kutta method was used with the time step � = 0:1.

The setup described above is slightly di�erent from the one used in our

previous experiments [Ogorza lek et al. 1995, Ogorza lek et al. 1996]. Here

we use balanced chaotic circuits, where the value of the resistor connecting

capacitors C

1

and C

2

in a single circuit is modi�ed. This ensures the existence

of a synchronized chaotic solution. If we apply identical initial conditions to

every oscillator in the array (x

i

(0) = x(0), y

i

(0) = y(0), z

i

(0) = z(0) for

i = 1; : : : ; n) then all the circuits oscillate synchronously and the equations

describing the array can be written as

C

2

_x = �y + G(z � x);

L _y = x; (3)

C

1

_z = G(x� z) � f(z);

where x

i

= x, y

i

= y and z

i

= z for i = 1; : : : ; n. Hence in the case of

equal initial conditions the network as a whole behaves chaotically as a single

uncoupled circuit. Our aim in this paper is the investigation of stability of

this synchronous solution.

3 Stability of the Synchronous Motion

In this section we investigate stability of the synchronous motion using Lya-

punov exponents. We follow the framework introduced in [Pecora & Carroll

1998].
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Let x

i

= (x

i

; y

i

; z

i

)

T

denote the vector of variables of the ith circuit. Let

F be the dynamics of the uncoupled circuit, x = F(x) as de�ned by Eq. (3).

Then the dynamics of the ith circuit can be written in the following form:
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where G

1

is the coupling strength and E is the matrix that is used for cou-

pling. For the bidirectional coupling we consider the coupling matrix is
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G is the matrix of couplings between circuits. In our setup we use G
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for adjacent oscillators, G
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For the network composed of n = 2 circuits the self coupling coe�cient is

G

ii

= �1 (each circuit is connected with one circuit only and in order to

balance the circuit we have to modify the value of the conductance G by

�G

1

. Hence in this case the matrix G has the form:

G =

�

�1 1

1 �1

�

: (7)

In all cases (n = 2, n � 3) the sum

P

j

G

ij

= 0 and hence the synchronization

manifold in invariant (if x

i

= x

j

for all i; j the last term in Eq. (4) disappears).

Let us create the variational equation of Eq. (4) and diagonalize G ob-

taining a block diagonalized variational equation with each block having the

form (for the details see [Pecora & Carroll 1998]):

_
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Figure 2: Maximum Lyapunov exponent �

max

of the generic variational equa-

tion for real .

where 

k

are eigenvalues of G (k = 0; : : : ; N � 1). The above equation for

k = 0 is the variational equation for the synchronization manifold. Other

eigenvalues correspond to transverse eigenvectors.

The idea, introduced in [Pecora & Carroll 1998], is to compute the max-

imum Lyapunov exponent for the generic variational equation

_

� = (DF + E)�; (9)

as a function of . In general case Eq. (9) should be solved for  from complex

plane. In our case however as the matrixG has only real eigenvalues it su�ces

to solve it for real line only.

We have computed the maximum Lyapunov exponent of the generic vari-

ational equation for 60 equidistant points from the interval (�2; 1). The

results are shown in Fig. 2.

In order to use the solution of the variational equation plotted in Fig. 2

for investigation of stability of synchronous motion let us assume that we

have n oscillators in the array and the coupling strength is G

1

. First we

compute the eigenvalues 

k

of G. For n = 2 the eigenvalues are 

0

= 0,



1

= 2. For n � 3 they can be computed as 

k

= �4 sin

2

�k=n . We pick up

the eigenvalues associated with transverse eigenvectors (

1

; : : : ; 

n�1

). The

synchronous motion is stable if �

max

is negative for  = G

1



k

, where k =

1; : : : ; n� 1. We can read this information from Fig. 2.

Now we derive conditions for G

1

ensuring stable synchronous state and

�nd the array sizes for which it is possible to obtain stable synchronous solu-
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tion. Let us assume that there exist an interval of  for which the maximum

Lyapunov exponent of Eq. (9) is negative. From Fig. 2 one can see that this

assumption is ful�lled. Let us denote the ends of this interval by � and �

(with � < � < 0). We have estimated that in our case � � �1:171 and

� � �0:229.

The conditions for stability of synchronous motion are � < G

1



k

< � for

k = 1; : : : ; n � 1. Using the formulas for 

k

one can easily obtain the range

of G

1

, for which synchronization is possible:
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For a given network size n synchronization is possible if the above intervals

are not empty. For n = 2 the interval (��=2;��=2) is non{empty if �� <

��, which is true in our case. Now let us consider n � 3. The intervals in

Eq. (10) are not empty if

sin

2

�

n

>

�

�

for even n, (11)
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�
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One can easily obtain the following conditions:

n <

�

arcsin

p

�=�

� 6:86 for even n, (13)

n <

�

2 arcsin 0:5

p

�=�

� 7:05 for odd n. (14)

Thus, synchronization is possible for n = 2; : : : ; 7. In Table 1 we collect

the values of the coupling strength G

1

for which the maximum Lyapunov

exponent of Eq. (9) is negative for G

1



i

, i = 1; : : : ; n�1. They were obtained

using Eq. (10).
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n G

1

2 (0:1145; 0:5855)

3 (0:0763; 0:3903)

4 (0:1145; 0:2928)

5 (0:1657; 0:3237)

6 (0:2290; 0:2928)

7 (0:3041; 0:3080)

Table 1: Coupling strength G

1

for which �

max

is negative for G

1



i

, i =

1; : : : ; n � 1. For these values the existence of stable synchronized state is

possible.

4 Computer Simulations

In this section we compare theoretical predictions with the results of com-

puter experiments.

In order to test the stability of a particular solution one can perturb this

solution by a random additive signal with a small amplitude and observe the

steady{state behavior of the system. If the system converges to the solution

under consideration one claims that the solution is stable.

We have performed such experiment for n = 2; : : : ; 7 and di�erent G

1

.

The value of G

1

was modi�ed from 0 to 0:6 with the step 0:005. Results are

shown in Fig. 3. As a solid line we plot theoretical predictions from Table 1.

In experiments the chaotic synchronous solution is perturbed by a random

additive signal of amplitude 0:0001 (result plotted below the solid line) and

0:01 (result plotted above the solid line). Results of computer simulations

are plotted as dots. The dot is plotted if after time t = 1000 the state is still

synchronous.

One can clearly see that the results of experiments with smaller amplitude

of perturbation are closer to theoretical results. This corresponds to the fact

that using Lyapunov exponents we can obtain only local information along

the synchronization subspace. If the initial point is far from the synchroniza-

tion subspace we cannot predict the behavior of the system using Lyapunov

exponents. Another problem is that negativity of Lyapunov exponents is

only a necessary conditions for the existence of stable synchronous solution.

It is interesting to note that for n = 7 we have not found G

1

with exper-

imentally stable synchronous solution. This will be discussed later.

Now let us discuss several examples. In Fig. 4 we plot the steady state
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Figure 3: Theoretical vs simulation results for the network size n = 2; : : : ; 7.

Solid line | theoretical prediction based on conditional Lyapunov exponents,

lower and upper dots | synchronous behavior in the steady state observed in

computer simulations after perturbation of the synchronous state by random

signal of amplitude 0:0001 and 0:01 respectively.

(a)

.

(b)

.

(c)

.

(d)

.

Figure 4: Steady{state of perturbed synchronous motion in an array com-

posed of n = 3 circuits for di�erent coupling strength: (a) G

1

= 0:05, (b)

G

1

= 0:1, (c) G

1

= 0:35, (d) G

1

= 0:4. In each row we plot y

i

versus y

i+1

for

i = 1; 2; 3.
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(a)
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Figure 5: Steady{state of perturbed synchronous motion in an array com-

posed of n = 5 circuits for di�erent coupling strength: (a) G

1

= 0:15, (b)

G

1

= 0:17, (c) G

1

= 0:32, (d) G

1

= 0:325.

behavior for n = 3 and four di�erent coupling values G

1

= 0:05; 0:1; 0:35; 0:4.

For each case we plot y

i

versus y

i+1

. Hence we can clearly see whether the

neighboring circuits are synchronized. One can observe that for G

1

= 0:1 and

G

1

= 0:35 the steady{state is synchronous, while for the other two cases the

steady{state is not synchronous. Although it is not synchronous globally but

one can see that in both cases there exists a cluster of two circuits oscillating

synchronously. Results observed numerically are in a good agreement with

theoretical prediction, from which it follows that the synchronous state is

stable for G

1

2 (0:0763; 0:3903) (compare Table 1 and Fig. 3).

We obtain similar results for n = 5. For G

1

= 0:17 and G

1

= 0:32 we ob-

serve stability of synchronous behavior, while for G

1

= 0:15 and G

1

= 0:325

the synchronous mode is not stable (see Fig. 5). The experimental results

agree very well with theoretical predictions (compare Table 1). Another in-

teresting phenomenon is the existence of clusters composed of two circuits

oscillating synchronously. There is one cluster for G

1

= 0:15 and two clusters

for G

1

= 0:325. One of them is not visible as it is composed of circuits 3 and

5, which are not neighbors.

Finally let us consider the network composed of 7 oscillators. In this

case the interval of coupling strength with stable synchronous motion is

very narrow G

1

2 (0:304; 0:308). We choose two values of coupling coe�-
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(a)
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Figure 6: Steady{state of disturbed synchronous motion in an array com-

posed of n = 7 circuits for di�erent coupling strength: (a) G

1

= 0:30, (b)

G

1

= 0:306, time step � = 0:1 (c) G

1

= 0:306, time step � = 0:02.

cients: G

1

= 0:30 and G

1

= 0:306. The trajectory of the system after time

T = 1000 is shown in Fig. 6(a),(b). In the steady{state the system is not in

the synchronous mode. This is in contrast to theoretical predictions, as for

the second case we expect the synchronization behavior. The escape from

synchronization manifold is very slow. For G

1

= 0:30 we observe loss of

synchronous behavior after T � 400. For G

1

= 0:306 the escape time is even

longer: T � 800. We believe that the reason for this disagreement is small

noise, coming from the integration procedure, that causes desynchronization

bursts. The stability of synchronous behavior is not robust (the maximum

Lyapunov exponents corresponding to transversal directions is negative but

very close to zero). We have repeated the experiment using smaller integra-

tion step (� = 0:02 instead of � = 0:1). The results are shown in Fig. 6(c).

After a very long time T = 10000 one still observes synchronization behavior.

5 Conclusions

In this paper we have investigated stability of synchronous solution of a one{

dimensional array of bi{directionally coupled chaotic circuits. We have found

the upper limit on the size of the network, that can sustain stable synchronous

motions. For di�erent array sizes we have found the ranges of the coupling

strength, for which the synchronous motion is stable. We have con�rmed that

the theoretical predictions of the existence of the stable synchronous solution
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compare very well with the results of computer simulations. We would like to

stress that study of synchronization properties based on Lyapunov exponents

presented in this paper gives local information in the neighborhood of the

synchronous state only. Many other attractors may exists and in fact for each

coupling strength considered we have observed an abundance of attractors

without the synchronization property.
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