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Dynamics of the Hénon Map in the Digital Domain
Zbigniew Galias , Senior Member, IEEE

Abstract— Nonlinear maps are usually implemented using
finite-precision floating-point formats both in practical applica-
tions and in theoretical investigations. In the digital domain, the
size of the state space is finite and every trajectory after a finite
number of iterations reaches a cycle. It is therefore important
to study the influence of rounding errors and the finiteness of
the state space on properties of nonlinear maps such as the
number of cycles, their periods, sizes of basins of attraction of
cycles, and average convergence times. In this work, a thorough
analysis of the dynamics of finite-precision implementations of the
Hénon map is carried out. Six computational formulas and three
popular finite-precision floating-point formats are considered.
An exhaustive search is performed to find all cycles existing for
single-precision floating-point implementations. Interval methods
are used to reduce the number of initial conditions that must be
considered. An efficient graph-based algorithm is designed to
find basins of attraction. For the double-precision and extended-
precision implementations, statistical methods are utilized to
find cycles and to estimate sizes of their basins of attraction.
Properties of observed cycles and corresponding dynamical
phenomena are thoroughly discussed.

Index Terms— Hénon map, finite-precision computations,
cycle, basin of attraction.

I. INTRODUCTION

NUMERICAL simulations are one of the main tools used
to study nonlinear maps. Nonlinear maps implemented in

the digital domain are used in various applications, including
pseudo-random number generators [1], [2], [3], [4], [5], secure
communication [6], image encryption [7], [8], and chaotic
cryptography [9], [10], [11]. Finite-precision implementations
change dynamical properties of nonlinear maps and may
promote various phenomena including the existence of short
periodic attractors which are undesirable in practical applica-
tions. Hence, it is important to investigate the influence of
computational accuracy and the computational formula used
on properties of nonlinear maps.

Various methods to improve properties of chaotic maps
implemented in the digital domain have been proposed.
This includes methods to increase the length of generated
trajectories before repeating itself and methods to improve
randomness of generated trajectories. A varying parameter
compensation method is introduced in [1]. A reseeding-mixing
method to extend periods of observed cycles and to improve
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the statistical properties of generated trajectories is carried out
in [12]. Dynamic parameter-control chaotic system framework
in which output of one chaotic map is used to control the
parameter of another chaotic map, is introduced in [3]. Cas-
cade chaotic systems are used to improve the randomness and
security level of pseudo-random number generators in [13].
A congruential generator based method is proposed to coun-
teract the performance degradation of digital chaos in [14].

When a nonlinear map is implemented in the digital domain
the state space is finite. As a consequence, each trajectory,
after a finite number of steps, must visit a point in the state
space that was visited before. From then on, the trajectory
remains periodic. The part of a trajectory before reaching the
steady-state periodic solution is called a transient. Assuming
that the size of the state space is M , the maximum length of
a periodic trajectory that may be observed is M . In practice,
observed trajectories have much shorter periods. The eventual
periodicity of all trajectories has important consequences from
both the theoretical and practical points of view. The problem
is especially important for non-linear maps that exhibit chaotic
behavior. Under certain assumptions, a chaotic attractor con-
tains an infinite number of unstable periodic orbits. The
measure of the set of unstable periodic orbits is zero, which
means that there is a zero probability of selecting an initial
point with periodic behavior. An arbitrarily small deviation
from the position of an unstable periodic orbit results in the
divergence of the trajectory from this orbit. However, when
calculations are carried out in finite precision, it may happen
that some of these unstable periodic orbits could actually
be observed in simulations. This is caused by a nonzero
probability that a trajectory initiated close to the position of
an unstable period-p orbit returns to the initial point after a
number of iterations, which is equal to p or its low multiple.

The key properties of chaotic map implementations are the
lengths of observed cycles and the statistical properties of gen-
erated trajectories. The degradation of dynamical properties of
nonlinear maps caused by finite-precision implementations has
been studied by many researchers. The influence of rounding
errors on dynamical behaviors of the logistic map is studied
in [15]. The authors study the length of the longest limit cycle
and the average transient length as a function of the size of the
state space. It is shown that for the logistic map, in simulations,
one observes cycles of length of the order

√
M , where M is

the size of the state space. It is argued that although periodic
trajectories are relatively short, different types of behavior are
correctly recognized in numerical simulations, and that certain
statistical properties of observed trajectories, such as Lyapunov
exponents, are preserved. The relation between the expected
period of observed orbits and the maximum rounding error
for the Ikeda map is studied in [16]. Dynamical degradation of
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piecewise linear chaotic maps caused by finite-precision imple-
mentations is studied in [17]. Statistical study of the influence
of double-precision errors on the behavior of the logistic map
is carried out in [18]. The influence of the rounding method
on properties of trajectories generated by the logistic map is
studied in [19]. Five rounding modes are considered, and it
is shown that periods of cycles and transient lengths depend
on the rounding mode. In [9], fixed-point arithmetic is used to
study cycle lengths of finite-precision implementation of the
logistic map and the influence of correlation properties on the
performance of chaos-based cryptosystems is discussed.

Properties of finite-precision implementations of nonlin-
ear maps may be studied using the idea of state transi-
tion diagrams [15]. A similar approach under the name of
state-mapping networks is used in [20] to analyze dynamical
behaviors of the logistic map and the tent map implemented
using fixed-point arithmetic. Analysis of dynamical properties
of the logistic map implemented with up to 16 bits of precision
is carried out in [14]. Dynamical properties of the logistic
map implemented using single-precision and double-precision
computations are analyzed in [21]. The graph-based approach
is used in [22] to analyze the dynamics of the logistic map.

In principle, to find all cycles existing in a finite-precision
implementation of a nonlinear map one should compute tra-
jectories initiated in all points belonging to the state space.
When the size of the state space is small and all states
can be stored in a computer memory, then a complete
characterization of cycles and their basins of attraction can
be carried out using the graph-based approach [14], [15],
[20], [21]. In this approach, one selects a point in the state
space and computes its trajectory until a cycle is found or a
point visited before is reached. After all points are visited,
the graph structure is known and cycles and their basins of
attraction can be easily identified. This approach has been
used to study the logistic map and the tent map implemented
using fixed-point arithmetic and low precision floating-point
arithmetic. Similar calculations have been carried out for the
single-precision floating-point implementation of the logistic
map in [21]. To find all cycles in larger state spaces one
may use a trajectory-based approach, where the exhaustive
search is carried out in a reduced search space. This method
has been applied to the logistic map implemented in double-
precision (compare [21]). Most of the results available in the
literature involve nonlinear maps of dimension one and low-
precision accuracy. For higher dimensional maps, a complete
characterization of the dynamics of the map implemented in
the digital domain is a challenging research problem even for
the single-precision accuracy.

In this work, we develop methods which may be used to
study higher-dimensional maps implemented using floating-
point formats. As an example, we study dynamical properties
of Hénon map [23]—a well-known example of a chaotic two-
dimensional map—implemented using three popular binary
floating-point formats: the single-precision (binary32) format,
the double-precision (binary64) format, and the extended-
precision format. Two selections of parameter values are
considered: the classical parameter values for which the
famous chaotic attractor is observed in simulations and

parameter values for which a stable period–28 orbit exists.
Due to the size of the state space, one cannot use methods
developed for one-dimensional systems to analyse the Hénon
map for any of the considered floating point formats. For the
single-precision format, a new method is proposed to find
all cycles existing in the system and to construct basins of
attraction in case of small basins. For the double-precision and
the extended-precision format, statistical approach is used to
find cycles and sizes of their basins of attraction. Properties of
observed trajectories are discussed and it is verified, whether
observations on the number of cycles and their average length
reported in the literature [15], [16], [20] are valid for the
Hénon map.

The main contribution and the novelty of this work is the
development of methods to study the dynamics of nonlinear
maps in the digital domain and carrying out analysis of
the Hénon map implemented using different computational
formulas in most popular floating point formats.

All computer programs are developed in C++ language
and compiled using the g++ compiler, version 9.4.0. For the
interval arithmetic support the CAPD library [24] is used.
Computation times are reported for a single core 3.4 GHz
processor. Parallel computations are used to reduce the wall
computation time. The C++ code implementing algorithms
presented in this work and the data necessary to carry out
the computations are available at http://www.zet.agh.
edu.pl/henon/tcasi2023.

The layout of the remaining part of the paper is as follows.
In Section II, the definition of the Hénon map is recalled and
its finite precision implementations are described. Computa-
tional tools for the analysis of finite-precision implementations
of nonlinear maps are presented in Section III. Analysis of
finite-precision implementations of the Hénon map for two sets
of parameter values is carried out in Section IV. Conclusions
are presented in Section V.

II. THE HÉNON MAP IN FINITE PRECISION

The Hénon map [23] is a two-parameter map of a plane
defined by

h(x, y) = (1+ y − ax2, bx). (1)

The linear change of coordinates (x, y) �→ (ȳ, bx̄) con-
verts (1) to

h(x, y) = (y, 1+ bx − ay2). (2)

Digital implementations of maps (1) and (2) are equivalent,
provided that the order of elementary arithmetic operations is
the same. In the following, we use the latter version because
it permits a more efficient search algorithm for cycles.

We consider six computational formulas for equation (2):

h(x, y) = (y, 1+ bx − yya), (3a)

h(x, y) = (y, 1+ bx − ayy), (3b)

h(x, y) = (y, bx − ayy + 1), (3c)

h(x, y) = (y, bx − yya + 1), (3d)

h(x, y) = (y, 1− yya + bx), (3e)

h(x, y) = (y, 1− ayy + bx). (3f)
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TABLE I

PROPERTIES OF FINITE-PRECISION DATA TYPES

These formulas are mathematically equivalent. They differ in
the order of elementary arithmetic operations in which the
final result is evaluated. This may lead (and usually leads)
to different final results when computations are performed in
finite precision.

In the following, we consider three finite-precision floating-
point formats: the single-precision binary floating-point for-
mat (binary32, float in C++), the double-precision binary
floating-point format (binary64, double in C++), and the
extended-precision format (long double in C++). The
first two types are defined in the IEEE 754 floating-point
computation standard [25] and are commonly used in micro-
processors. Some important properties of these representations
are collected in Table I: m10 is the number of decimal digits
of precision for a given data type, m2 specifies the number of
base 2 digits in the mantissa part, and ε is the smallest positive
number such that the arithmetic operation 1 + ε carried out
using a given data type returns a value larger than 1.

In the last row of Table I computation speeds are compared.
For each data type, the time t needed to compute 108 iterations
of the Hénon map is reported. Computations carried out using
the first two data types take the same time. The single-
precision format is used primarily to save memory space
and not to gain speed. Note that careful implementation of
computational formulas in C++ is needed when using the
float type. In C++ the constants are of double type by
default and therefore the constant 1.0F should be used instead
of 1.0 in the formulas (3). If the constant 1.0 is used, then
all variables are cast to the double type, which takes extra
time, and the computations are slower. Computations using the
long double format are more than two times slower than
those for the first two formats.

III. ANALYSIS OF NONLINEAR MAPS IN THE

DIGITAL DOMAIN

In this section, a set of tools for studying nonlinear maps
implemented using finite-precision arithmetic is presented.
We describe methods to estimate the size of the state space,
compute the inverse of a map, find all cycles, their basins of
attraction, and average convergence times (transient lengths).
The methods are illustrated using the Hénon map h : R2 �→ R

2

as an example. After minor adjustments, the methods can be
applied to other nonlinear maps.

In the digital domain, the number of representable points
in the state space is finite. For an n-dimensional map a rep-
resentable point is a point in R

n which can be exactly
represented using a selected finite-precision arithmetic. The
dynamics of a finite precision implementation of a map can
be represented as a graph with the vertices being representable

points and the edges being transitions between these points as
defined by the action of the map. The graph has a structure
of c connected components, where c is the number of cycles.
Each connected component is the basin of attraction of a single
cycle. In the characterization of finite-precision implementa-
tions of maps, the most important problems are the number of
cycles and their properties such as the period, the size of the
basin of attraction, and the average convergence time.

The basin of attraction of a given cycle is the set of initial
points such that trajectories based at these points after a finite
number of iterations reach this cycle. The probability cprob of
reaching a given cycle starting from a random initial condition
belonging to the state space can be computed as the ratio of
the basin size s and the size of the state space M .

The convergence time for a given representable point is
defined as the number of iterations needed to reach the steady
state. For a point that belongs to a cycle, the convergence
time is zero. The average convergence time taver and the
maximum convergence time tmax for a given cycle are defined
as the average and maximum convergence times calculated
over the whole basin of attraction of this cycle. The average
(maximum) length of a trajectory before repeating itself can be
computed as the sum of the period p of the steady-state cycle
and the average (maximum) convergence time taver (tmax).

A. Size of the State Space

Let us estimate the size M of the state space for
finite-precision implementations of the Hénon map. Observed
trajectories are enclosed in the rectangle [−1.5, 1.5] ×
[−1.5, 1.5] (see Figs. 1 and 2). The number of representable
points (x, y) belonging to this rectangle is approximately
4.6 · 1018 and 8.5 · 1037 when single- and double-precision
representations are used.

The size of the state space can be reduced using
interval-arithmetic-based tools. First, the region of
interest [−1.5, 1.5] × [−1.5, 1.5] is covered by boxes
(two-dimensional interval vectors) of the form vk = [kxδ,
(kx + 1)δ] × [kyδ, (ky + 1)δ], where kx and ky are integers
and δ > 0 is a real number. For a fixed δ each box vk ,
is uniquely defined by integers kx and ky . Next, for each
box vk an enclosure of its image is found using interval
arithmetic computations. The result obtained is an interval
vector containing images of all points belonging to the
box vk . Boxes v j which have non-empty intersection with
the enclosure are identified. This process creates a graph
representation of possible transitions between boxes. In this
representation, boxes are graph vertices and non-forbidden
transitions are graph edges. The reduction of the size of
the state space is obtained by removing boxes containing
transient dynamics only, which is equivalent to finding an
enclosure of the invariant part of the map. In this procedure,
all boxes which are not a beginning of any edge are removed.
Similarly, we remove all boxes which are not an end of
any edge. A detailed description of this procedure is given
in [26]. Decreasing the box size δ increases the number of
boxes in the covering of the invariant part but decreases
its area and hence decreases the number of representable
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points belonging to these boxes. The value of δ should be
selected as small as possible under the condition that the
covering can be stored in the computer memory. Using
this procedure with boxes of size δ = 2−17 yields the
covering E = {vk}Nk=1 of the invariant part composed of
N = 25736445 boxes (compare also [27]) with the area
below 0.0014 which is significantly smaller than the area
of the rectangle [−1.5, 1.5] × [−1.5, 1.5]. Let us denote by
� the set of representable points belonging to the boxes in
the covering E . In the following, the set � is considered
as the state space of finite-precision implementations of the
Hénon map for all computational formulas (3). The size of
� is Mf ≈ 2.6 · 1013 and Md ≈ 5.9 · 1031 for single- and
double-precision representations, respectively. For a single
box the number of representable points belonging to this box
is calculated as a product of representable numbers in the
x and y coordinates. Mf and Md are computed as the sum
of representable points in each box over all boxes belonging
to E . Note that the number of representable points in a
given box is not constant despite the fact that the boxes
are of the same size. For example, for the single-precision
representation, the number of representable points belonging
to a box in the covering E varies from 4225 to 1.2 ·1011. This
huge difference is a consequence of using subnormal numbers
defined in the IEEE 754 standard. With subnormal numbers,
the density of representable numbers in a neighborhood of
zero is significantly increased.

B. Finding All Cycles

As mentioned before, in order to find all cycles, one should,
in general, consider all points belonging to the state space and
for each initial point find the cycle to which its trajectory
converges. In the case of the Hénon map, the size of the state
space is very large even for the single-precision floating-point
format (Mf ≈ 2.6 · 1013). The number of initial points to be
considered can be reduced by skipping certain boxes. The idea
is to introduce an ordering of boxes and to skip a box if all
trajectories passing through this box has to pass through boxes
larger according to the selected ordering. An ordering should
permit removing boxes containing many representable points
(i.e., those that lie close to the axes x = 0 and y = 0). The
following ordering is used during the computations: vk � vl

if and only if kx > lx or kx = lx and ky > ly , where (kx , ky)
and (lx , ly) are pairs of integers defining boxes vk and vl ,
respectively. The box vk is skipped if its image or preimage
under the mth iteration of the map is enclosed in the set of
boxes E�k = {v ∈ E : v � vk}. This elimination procedure
does not require recalculation of images or preimages of
boxes. It can be carried out based on the information on
possible transitions between boxes which is stored in the
graph representation of the dynamics of the map. Applying
this procedure to the set of boxes E with m ∈ {1, 2, . . . , 10}
leads to the set E � composed of N = 1183485 boxes. Using
m > 10 increases the computation time without significant
improvement of the results. The number of representable
points in a single box belonging to E � varies from 4225 to
33153. The number of initial points that must be considered

Algorithm 1 Find All Cycles.
1: function REDUCECOVERING(E ,M)
2: E � ← E
3: for all vk ∈ E � do 
 process each box
4: for all m ∈ {±1,±2, . . . ,±M} do
5: if hm(vk) ⊂ E�k then
6: E � ← E � \ {vk} 
 remove box
7: end if
8: end for
9: end for

10: return E �
11: end function
12: function FINDALLCYCLES

13: E ← the set of boxes covering the attractor
14: E � ← REDUCECOVERING(E ,10)
15: C ← ∅ 
 initialize the set of cycles
16: for all vk ∈ E � do 
 all boxes in E �
17: for all (x, y) ∈ vk do 
 all initial points in vk

18: c ← the cycle for the initial condition (x, y)
19: C ← C ∪ {c}
20: end for
21: end for
22: return C
23: end function

to find all cycles is reduced from Mf ≈ 2.6·1013 representable
points belonging to boxes in the covering E to M �f ≈ 6.5 ·109

representable points in E �. In the last step for each initial
point in E � the corresponding steady state cycle is computed.
The complete procedure to find all cycles is presented as the
Algorithm 1.

For the double-precision and extended-precision computa-
tions the presented method to find all cycles does not work
due to very large sizes of the state space. Cycles can be
found by computing steady state trajectories starting from
random initial conditions. This method does not guarantee
finding all cycles and will be referred to as the statistical
approach. Cycles with a large basin of attraction (which is
equivalent to a high convergence probability), are more likely
to be found. The probability that a cycle with the convergence
probability cprob is detected starting from N random initial
conditions is 1 − (1 − cprob)

N . To detect such a cycle with
the probability larger than 0.95 one should use N such that
1 − (1 − cprob)

N > 0.95. It follows that with N random
initial conditions a cycle with the convergence probability
cprob ≥ cN = 1− N

√
0.05 is detected with the probability larger

than 0.95. For example, for N = 100 and N = 10000 we have
cN ≈ 0.02951 and cN ≈ 0.0002995, respectively.

C. Computing Preimages in the Digital Domain

The (infinite precision) Hénon map (2) is invertible. The
preimage of z = (x, y) is a single point z� = (x �, y �) =
((y−1−ax2)/b, x). Finite-precision implementations are not
invertible—the preimage of a representable point z = (x, y) is
a (possibly empty) set of representable points, whose images
are equal to z. The procedure to find the preimage h−1(z)
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Algorithm 2 Find the Preimage Set S for the Point (x, y).
1: function h(x, y) 
 evaluate the map
2: return (y,1+b*x-y*y*a)
3: end function
4: function h−1(x, y) 
 evaluate the inverse
5: return ((y-1-a*x*x)/b,x)
6: end function
7: function FINDPREIMAGE(x, y)
8: S ← ∅ 
 initialize the preimage
9: (x �, y �) ← h−1(x, y)

10: repeat
11: (x ��, y ��) ← h(x �, y �)
12: if (x ��, y ��) = (x, y) then
13: S ← S ∪ {(x �, y �)} 
 update the preimage
14: end if
15: x � ← the smallest representable number above x �
16: until y �� ≤ y
17: (x �, y �) ← h−1(x, y)
18: repeat
19: (x ��, y ��) ← h(x �, y �)
20: if (x ��, y ��) = (x, y) then
21: S ← S ∪ {(x �, y �)} 
 update the preimage
22: end if
23: x � ← the largest representable number below x �
24: until y �� ≥ y
25: return S
26: end function

of z = (x, y) when the map h is implemented in the digital
domain using one of the formulas (3) is based on the weak
monotonicity of the expression 1+bx−ay2 with respect to the
variable x when calculations are carried out in finite precision.
Initially, the result set h−1(z) is empty. After computing
z� = (x �, y �) = ((y − 1 − ax2)/b, x), the image z�� = h(z�)
is found using the selected computational formula. If z�� = z,
then z� is added to the preimage h−1(z). Next, x � is increased
to be the next representable number, and the point z� = (x �, y �)
is added to h−1(z) if z�� = (x ��, y ��) = h(z�) = z. Increasing
x � and adding new points to h−1(z) is continued as long
as y �� ≤ y (the stopping condition is y �� > y). A similar
procedure is carried out with decreasing x � starting from
x � = (y−1−ax2)/b and using the stopping condition y �� < y.
A pseudo code for the algorithm to compute the preimage of
the version (3a) is presented as the Algorithm 2. Other versions
are obtained by changing the line 2 in the algorithm.

The time needed to find the preimage using the Algorithm 2
depends linearly on the preimage size. For the Hénon map, the
size of the preimage in case of single-precision computations
varies from zero (empty set) to approximately 1.77 · 109. For
example, the preimage of z = (0, 1.25) contains 7 points
and the preimage of (1.25,−1.1875) = h(z) = h(0, 1.25)
contains 1760908629 points. Extremely large preimage sets
exist when the preimage of z contains a point (x �, y �) with the
first coordinate being zero or close to zero. In this case, many
points of the form (x �, y �) with x � being a subnormal number
produce the image z.

D. Constructing Basins of Attraction

The basin of attraction of a cycle may be constructed in a
recursive manner by finding preimages of points belonging to
the cycle, their preimages, and so on until there are no preim-
ages in the state space. The procedure to compute the basin
of attraction is as follows. First, we compute the preimage
P of the cycle, that is, the set of points outside of the cycle
whose images belong to the cycle. For each point z ∈ P its
basin of attraction (the set of points whose trajectories reach z)
has a directed rooted tree structure with z being the root. The
basin of attraction of z ∈ P can be found using the Depth
First Search (DFS) algorithm [28]. The DFS algorithm is
continued until a leaf (a point without preimages) is reached or
a preimage is outside the state space �. The advantage of this
procedure is that we do not need to store the basin of attraction
in a computer memory. As a consequence, the procedure can
be applied to relatively large basins. In Section IV, it is shown
that the proposed approach can successfully handle basins of
size up to 2 · 1011.

The sizes of larger basins can be estimated using a statistical
method. In this approach, a large number of initial points in
the state space � is selected and for each initial point the
steady state solution is identified. The probability cprob of
convergence to a given cycle is calculated as the ratio of the
number of initial points whose trajectories converge to this
cycle and the total number of initial points. The size of the
basin can be estimated as s = cprob ·M where M is the number
of representable points in �.

In infinite precision, to distinguish whether a cycle repre-
sents a stable orbit, one may compute the Lyapunov spec-
trum of a trajectory along this cycle. For a two–dimensional
map, the Lyapunov exponents λ1, λ2 computed along a cycle
characterize the rate of attracting or repelling nearby trajec-
tories in different directions of the state space. We assume
that the Lyapunov exponents are sorted in descending order,
i.e., λ1 ≥ λ2. Note that the Lyapunov spectrum computed for
different cycles is usually different. If all Lyapunov exponents
are negative, then the cycle is stable. This indicates that the
cycle corresponds to a periodic attractor of the system. If the
largest Lyapunov exponent is positive, then the orbit is unsta-
ble. In this case, we may expect that the cycle corresponds
to a chaotic trajectory and the observed periodic trajectory is
an artifact caused by rounding errors. For the calculation of
Lyapunov exponents, the QR decomposition-based method is
used. During the computations a trajectory (z1, z2, . . . , zn) of
the length n is considered. The matrix Q0 is initialized to be
the identity matrix. At the kth step the Jacobian matrix Jk =
h�(zk) is computed and the matrix Jk Qk−1 is decomposed as
a product Qk Rk of an orthogonal matrix Qk and an upper
triangular matrix Rk . The i th Lyapunov exponent is computed
as the sum of logarithms of the i th diagonal entries of matrices
Rk divided by n (for details see [29]). When Lyapunov
exponents are calculated along a cycle, it is sufficient to
consider a single pass of a trajectory along this cycle. To obtain
accurate results, the QR decomposition algorithm should be
applied for several iterations before starting calculations of
the Lyapunov exponents. This ensures that the matrices Qk are
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Fig. 1. An example trajectory of the Hénon map for a = 1.4, b = 0.3
(chaotic case). Computations are carried out in double precision.

properly aligned for all points along the considered trajectory.
From the Lyapunov spectrum (λ1, λ2) one may compute the
Lyapunov dimension [30]

d = k + |λk+1|−1
k∑

i=1

λi , (4)

where k = max
{

j : ∑ j
i=1 λi ≥ 0

}
. For two-dimensional

systems, if λ1 < 0 then the Lyapunov dimension is zero.
Otherwise, the Lyapunov dimension is not less than one.

IV. DYNAMICS OF FINITE-PRECISION IMPLEMENTATIONS

OF THE HÉNON MAP: CASE STUDIES

In this section, we study the effects of finite-precision
implementations of the Hénon map on the dynamics of the
system. We consider two sets of parameter values for which
in simulations one observes a chaotic trajectory and a stable
periodic trajectory, respectively.

A. Chaotic Case

First, consider the case with classical parameter values a =
1.4 and b = 0.3. for which the famous Hénon attractor is
observed in simulations (see Fig. 1). The question of whether
the Hénon attractor is chaotic remains an open problem [31].

Parameter values a = 1.4 and b = 0.3 are not representable
numbers when binary floating-point formats are used. The
approximate values of the parameters used in the calculations
are a = 1.399999976, b = 0.300000012 for the float type,
a = 1.399999999999999911, b = 0.299999999999999989 for
the double type, and a = 1.399999999999999999978,
b = 0.300000000000000000011 for the long double type.
These numbers are selected as the closest representable num-
bers in a given precision to the classical parameter values.

Let us start with the single-precision format. Using the
method presented in Section III all cycles existing for the
computational formulas (3) have been found. The results
obtained for different versions v of the computational formula
are presented in Table II. For each cycle, we report its period
p and the position of the periodic point (x, y) with the

smallest x coordinate to permit verification of the results.
We also report Lyapunov exponents λ1,2 computed along
the orbit and the Lyapunov dimension d . To evaluate the
performance of the statistical approach N = 500000 initial
points belonging to the covering E are selected randomly and
for each initial point its steady state is found. The average
computation time is below 0.01 second per initial point. For
each cycle found using the statistical approach, we report the
probability cprob of convergence for this cycle. The size s of
the basin of attraction is reported for small basins for which the
graph-based approach with the DFS algorithm is successful.
For large basins the basin size can be approximately calculated
as s ≈ cprob · M where M is the size of the state space. taver
and tmax are the average and maximum convergence times
(i.e., the average and the maximum number of iterations
needed to reach a given cycle). Their values are exact in cases
where the graph-based approach is successful in finding the
basin of attraction. For larger basins, the values of taver and
tmax are estimated using the statistical approach.

First, let us note that each computational formula leads to
different results. It follows that the choice of the computa-
tional formula has a significant influence on the dynamics of
finite-precision implementations. The number of cycles varies
from 5 to 15. The shortest period is between 1 and 32. The
longest cycle has a period between 14119 and 55754. Note
that several low-period orbits are not found using the statistical
approach (the field cprob is empty).

The graph-based approach is successful in finding the basin
of attraction if the basin size is below 2.1 · 1011, which
corresponds to the probability of convergence cprob ≤ 0.007.
The size of the state space can be estimated by dividing the
basin size s by the convergence probability for the cycles
with both numbers reported. Computing this estimate for
cycles with basin size greater than 109 gives results in the
range [1013, 5 · 1013], which is consistent with the estimate
Mf ≈ 2.6 · 1013 obtained in Section III.

The longest cycle is predicted to be reached from the major-
ity of initial conditions (compare [15], [16]). For example,
in [15] it is observed that, typically, 90% of the states evolve to
the longest cycle and that the number of distinct cycles is less
than 5. The results presented in Table II only partially confirm
these hypotheses. In two out of the six cases (versions (3c)
and (3e)) the longest cycle does not have the largest basin.
For the version (3c) the relatively short period–619 orbit has
the largest basin and the convergence probability above 82%.
In three cases, the probability of convergence to the cycle with
the largest basin is below 80%. Moreover, the number of cycles
for the version (3a) is 15 including 11 cycles found using
the statistical approach. Another interesting case is observed
for the version (3f), where the very short period–13 orbit
has a relatively large basin of attraction with the size above
2·108. This orbit has been found using the statistical approach.
It follows that with a non-negligible probability, one may
encounter short cycles starting from random initial conditions.

Let us now discuss the hypothesis that the length p of the
longest cycle is of the order of

√
M (compare [15]). This is

equivalent to stating that M is of the order of p2. With the
length p ≈ 5·104 we obtain M ≈ p2 = 2.5·109. This is much
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TABLE II

CHAOTIC CASE. THE float DATA TYPE. CYCLES EXISTING FOR a = 1.399999976, b = 0.300000012. v IS THE VERSION OF THE COMPUTATIONAL
FORMULA, p IS THE PERIOD OF THE ORBIT, (x, y) IS THE POSITION OF THE PERIOD– p POINT, λ1,2 ARE LYAPUNOV EXPONENTS, AND d IS THE

LYAPUNOV DIMENSION COMPUTED ALONG THE ORBIT. taver AND tmax ARE THE AVERAGE AND MAXIMUM CONVERGENCE TIMES

smaller than the estimated state space size Mf ≈ 2.6 · 1013.
The discrepancy is likely to be caused by the fact that a large
number of points in the state space (for example, points with
a coordinate being a subnormal number) are not reachable
(i.e., have an empty preimage). In this context, a more precise
estimate of the size of the state space is based on the set E �
which contains approximately 6.5 · 109 representable points.

For all cycles, the largest Lyapunov exponent and
the Lyapunov dimension are positive. In most cases, the
largest Lyapunov exponent is close to the value of the largest
Lyapunov exponent λ1 ≈ 0.419 observed for higher preci-
sion computations. The largest deviations are seen for short

periodic orbits: λ1 ≈ 1.182 for the period-1 cycles existing
for versions (3a) and (3e), λ1 ≈ 0.654 for the period-1
cycles existing for versions (3a) and (3b), λ1 ≈ 0.5391 for
the period-4 cycle (version (3f)), and λ1 ≈ 0.1988 for the
period-13 cycle (version (3f)). These cycles correspond to
short unstable periodic orbits of the infinite-precision Hénon
map. Their presence in finite-precision implementations is
a result of rounding errors. The small maximum Lyapunov
exponent λ1 ≈ 0.1988 observed for the period-13 cycle
(version (3f)) means that this cycles is weakly repelling.
This explains the large basin of attraction of this cycle when
compared to other low period cycles.
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TABLE III

CHAOTIC CASE. THE double DATA TYPE. CYCLES EXISTING FOR a = 1.399999999999999911, b = 0.299999999999999989

In all cases, the average length of a trajectory before it
repeats itself belongs to the interval of [5 · 104, 8 · 104].
It follows that for the float type it does not make sense
to consider trajectories with more than 105 iterations.

Let us now consider the double-precision floating-point
format. In this case, the graph-based approach does not work
due to extremely long computation time needed to consider
all initial conditions. Therefore, we are limited to the sta-
tistical approach. For the sake of brevity, only the results
for versions (3a) and (3f) are presented. For each version
N = 3000 initial conditions are considered and steady-state
behavior is found. The average computation time is 4 hours
per initial point. Computation times are much longer than for
the single-precision case due to much longer transients. The
results are presented in Table III.

The number of cycles found is 6 and 5 for versions (3a)
and (3f), respectively. The periods of the longest cycles are
p = 2875179482 and p = 7516037528, which corresponds
to estimates of the size of the state space p2 ≈ 8.3 · 1018

and p2 ≈ 5.6 · 1019. These estimates are significantly smaller
than the number Md ≈ 5.9 · 1031 of representable points in
the covering E . It is expected that the difference is related to
the usage of subnormal numbers, similarly as for the single-
precision floating-point format. For both versions, the longest
cycle has the largest basin of attraction. The probability of
convergence to the longest cycle is cprob = 0.864 and cprob =
0.988 for versions (3a) and (3f), respectively. The probability
of convergence to the second longest cycle for the version (3a)
is cprob ≈ 9%. For the version (3f) the convergence probability
for each cycle apart from the longest one is below 1%.
In general, the probability of convergence is lower for shorter
orbits. There are, however, some exceptions. For example, for
the version (3a) the probability of convergence to the orbit #4
is more than twice that of orbit #3, despite the fact that the
period is almost two times shorter.

Values of Lyapunov exponents are very close to each other
for all cycles. This means that each cycle represents a chaotic
trajectory and can be used to characterize behavior of the
infinite-precision system in terms of Lyapunov exponents and
the Lyapunov dimension. The average length of a trajectory
before repeating itself is above 1010.

One should keep in mind that although short cycles have
not been found, it is very likely that there exist short cycles
with periods below 100 as in the single-precision case. Such

Fig. 2. Transient trajectory (blue dots) and stable period-28 orbit (red circles)
for a = 1.4, b = 0.2999999774905 (periodic case). Computations are carried
out in double precision.

orbits are difficult to find using the statistical approach due to
small basins of attraction.

The results obtained for the extended-precision (long
double) format are shown in Table IV. The number of
initial conditions considered for each case is N = 250.
The average computation time is 4 and 2 days per initial
point for versions (3a) and (3f), respectively. The longer
average computation time for version (3a) is the effect of
longer convergence times. The lower number of cycles found
(2 and 3 for versions (3a) and (3f), respectively) compared to
the double-precision case is related to the lower number of
initial conditions considered. The results regarding Lyapunov
exponents and the Lyapunov dimension are practically the
same for all orbits. The average convergence time is above
1012 and is 100 times longer than for the double-precision
case. It follows that the extended-precision format is sufficient
for most applications since longer trajectories are usually not
needed.

B. Periodic Case

Let us now consider the parameter values a = 1.399999999
99999991118, b = 0.29999997749050000273 for which a
stable period-28 orbit exists (compare [32]). Fig. 2 shows a
short part of a chaotic transient trajectory (blue dots) and the
periodic attractor (red circles). The coordinates of the point
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TABLE IV

CHAOTIC CASE. THE Long double DATA TYPE. CYCLES EXISTING FOR a = 1.399999999999999999978, b = 0.300000000000000000011

TABLE V

PERIODIC CASE. THE float DATA TYPE. CYCLES EXISTING FOR a = 1.399999976, b = 0.299999982

belonging to the periodic attractor with the smallest x coordi-
nate are (x, y) ≈ (−1.28464300676,−0.928932461817).

The parameters values used in the calculations are a = 1.
399999976, b = 0.299999982 for the float type, a =
1.4, b = 0.2999999774905 for the double type, and
a = 1.39999999999999991118, b = 0.29999997749050000
273 for the long double type. These numbers are
selected as the closest representable numbers in a given
precision to a = 1.39999999999999991118 and b =
0.29999997749050000273.

The cycles existing for single-precision implementation
found using the graph-based approach are reported in Table V.
For the version (3a) the number of cycles is 10 and the longest
cycle has period p = 26581. The convergence probability for
this cycle is relatively low cprob ≈ 55.2%. Seven cycles are
found using the statistical approach with N = 500000 ini-
tial points. There are two fixed points (period-one orbits)
located very close to the position of the true fixed point
x = y = (b − 1 + √

(1− b)2 + 4a)/(2a) ≈ 0.631354477.
Their basins of attraction are very small. For the version (3f)
the number of cycles is 8 including 6 cycles found using
the statistical approach. The longest cycle with the period
p = 184481 attracts more than 95% of initial conditions. The
shortest period-2 orbit is located very close to the position of
the fixed point x = y ≈ 0.631354477.

Note that period–28 orbit existing for the infinite-precision
implementation is not detected. None of the orbits found is
located close to the position of the stable period–28 orbit.
The reason is that the single-precision implementation does
not offer sufficient accuracy to observe this orbit. The point

(a, b) = (1.399999976, 0.299999982) in the parameter space
used in the computations does not belong to the periodic
window for which the stable period–28 orbit exists. If follows
that single-precision computations cannot be used to study
properties of the considered period–28 stable orbit.

The results obtained for the double-precision implementa-
tion using the statistical approach with N = 1000 initial points
are presented in Table VI. The average computation time is
40 minutes per initial point. For the version (3a) the majority
of initial conditions are attracted to the period–532 orbit. Note
that p = 532 is a multiple of 28 and the position of the
cycle is close to the position of the stable period–28 orbit.
The Lyapunov exponents computed along this orbit are both
negative. Almost 20% of the initial conditions are attracted
to long cycles with a positive Lyapunov exponent. Even more
interesting phenomena are observed for the version (3f). In this
case, more than 56% of the initial points are attracted to
long cycles, which behave in a chaotic manner. The largest
Lyapunov exponent calculated along these cycles is positive,
indicating that the behavior of the map is chaotic. Approxi-
mately 43% of initial points are attracted to period–224 and
period–196 orbits with negative Lyapunov exponents. The
periods p = 224 and p = 196 are multiples of 28, and
the orbit positions are very close to the position of the stable
period–28 orbit. In all cases, the average convergence time is
above 109, which means that we need to wait long time before
we can decide what type of steady-state behavior exists.

From the results presented in Table VI it follows that the
observed chaotic trajectory does not necessarily indicate that
the underlying dynamics of the infinite precision system is
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TABLE VI

PERIODIC CASE. THE double DATA TYPE. CYCLES EXISTING FOR a = 1.4, b = 0.2999999774905

TABLE VII

PERIODIC CASE. THE Long double DATA TYPE. CYCLES EXISTING FOR a = 1.39999999999999991118, b = 0.29999997749050000273

indeed chaotic. The reason is that the transient times needed
to converge to a stable periodic orbit may be very long. For
long transients there is a non-negligible probability that before
convergence a transient trajectory hits a point in the state
space which was visited before, thus forming a long periodic
trajectory not related to the existing periodic attractor.

The results obtained for the extended-precision implemen-
tation based on the calculations of trajectories started in N =
1000 randomly selected initial points are reported in Table VII.
The average computation time is 5 hours per initial point
and is significantly smaller than for the chaotic case, which
permits testing more initial points. All tested trajectories are
attracted to a cycle located very close to the true period–28
orbit. All periods are equal to 28 or are low multiples of 28.
For the versions (3a) and (3f) there are two and three distinct
period–28 orbits, respectively. Lyapunov exponents computed
along the cycles are all negative and are equal within the
reported accuracy (four significant decimal digits). Average
convergence times are below 1010 for all cycles, which is
approximately 100 times shorter than for the chaotic case.

We may conclude that the extended-precision implementa-
tion is better suited to study dynamical behaviors of the Hénon
map for parameter values a = 1.4, b = 0.2999999774905.
Due to the larger size of the state space, the probability that a
transient trajectory hits a cycle before converging to the stable
periodic orbit is lower than for the double-precision case.

On the other hand, one may say that the use of a lower
precision introduces more chaos in the system (rounding
errors are larger). For the double-precision implementation
some of the observed cycles resemble chaotic trajectories with
positive Lyapunov exponents, while for the extended-precision

all steady-state trajectories are low-period cycles with negative
Lyapunov exponents.

V. CONCLUSION

A set of tools was presented for the analysis of
finite-precision implementations of nonlinear maps. A method
to reduce the search space to find all cycles was proposed.
An efficient algorithm to compute preimages of a given
representable point was described. A DFS based algorithm
was designed to find basins of attraction of cycles.

The proposed methods were used to analyze finite-precision
implementations of the Hénon map for chaotic and periodic
cases. It was shown that different computational formulas lead
to different dynamical properties of finite-precision implemen-
tations in spite of the fact that these formulas are equivalent
from the mathematical point of view. It follows that when
results of computer simulations of nonlinear maps are reported,
it is necessary to precisely describe the way the map is
implemented to permit reproducibility of the results. Different
computational formulas and precisions should be tested to
make sure that the observed phenomena are not artifacts
caused by rounding errors. For the single-precision floating-
point implementation, all cycles were found. The structure of
the state space was investigated. Basins of attraction of cycles
were calculated using the graph-based approach for basins
with sizes below 2 · 1011. Sizes of larger basins were esti-
mated using the statistical approach. For double-precision and
extended-precision implementations, cycles and their basins of
attraction were studied using the statistical approach. Relations
between cycle lengths, precision used, and the size of the
state space were studied. It was shown that finite-precision
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implementations of nonlinear maps may support cycles with
very low periods. This may degrade properties of non-linear
maps in practical applications.

The results show that dynamical properties of finite-
precision implementations, such as the number of cycles, their
lengths, and the probability of convergence to a given cycle,
depend on the order of elementary operations used to evaluate
the map. It follows that the selection of the computational
formula used in finite-precision computations is important
both for applications of nonlinear maps and for the results
of theoretical studies. In applications of nonlinear maps one
should test all possible evaluation methods and select the one
with best dynamical properties.

From the results obtained for the double-precision imple-
mentations it follows that rounding errors may strongly disturb
the simulation results. Chaotic-like trajectories observed in
simulations do not necessarily imply that the dynamics of
the infinite-precision system is chaotic. The results presented
should alert researchers studying nonlinear maps to dangers of
making conclusions about dynamical properties based purely
on computer simulations.

The methods presented and the results obtained for the
Hénon map can be used by other researchers to help design
simulation studies and applications of nonlinear maps. The
methods after minor modifications may be used to study other
nonlinear maps implemented in the digital domain.
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