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Rigorous Analysis of Chua’s Circuit
with a Smooth Nonlinearity

Zbigniew Galias, Senior Member, IEEE,

Abstract—Dynamics of Chua’s circuit with a smooth nonlin-
earity is studied by means of interval arithmetic methods. We
analyze behaviors of the system for several parameter values
in the periodic and chaotic regions. For parameter values in
the chaotic region, we find lower bounds for the topological
entropy of a corresponding return map and prove that the system
is chaotic in the topological sense. We find low-period orbits
embedded in chaotic attractors and estimate the true value of
the topological entropy. We construct a trapping region enclosing
the spiral attractor and discuss how to prove the existence of a
trapping region for the case of the double-scroll attractor.

Index Terms—chaos, topological entropy, Chua’s circuit

I. INTRODUCTION

THE Chua’s circuit is a simple electronic circuit exhibiting
complex oscillatory dynamics [1], [2]. Dynamical behav-

iors and the problem of existence of chaos in this system has
been studied extensively since the invention of the circuit [3],
[4], [5], [6].

Most of the results presented in the literature are based on
simulations of the circuit and analysis of geometrical models
of observed attractors. The first rigorous result concerning the
existence of chaos in Chua’s circuit was given in [7], where
the existence of a Shilnikov-type homoclinic orbit is proved. A
computer-assisted proof of chaotic behavior (more precisely of
positive topological entropy) for the double-scroll attractor was
presented in [8]. In [9], it was shown that there exist a trapping
region for the double-scroll attractor. Rigorous study of the
spiral attractor was carried out in [10]. The results listed above
concern the circuit with a piece-wise linear characteristic of
Chua’s diode.

In this paper, we carry out rigorous analysis of Chua’s
circuit with a cubic nonlinearity [11], [12]. In Section II, we
recall the definition of the circuit. In Section III, we analyze the
behavior of the system in the periodic region. For each case we
construct a trapping region enclosing the numerically observed
attractor and carry out a complete study of the dynamics in the
trapping region. In Section IV, we investigate the dynamics of
the system for a parameter value in a period–3 window of the
chaotic region. In Sections V and VI, we present results of the
analysis of the spiral attractor and the double-scroll attractor.
We find accurate lower bounds for the topological entropy of
the associated return map and report results of the search for
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low-period orbits. We also discuss computational difficulties
associated with the replacement of a piecewise linear function
by a smooth nonlinearity.

An additional goal of this work is to show the importance
of rigorous computations and present detailed examples how
to use various interval arithmetic based tools to carry out
a thorough analysis of dynamical behaviors of nonlinear
systems. It is well known that due to rounding errors results
obtained by numerical simulations of nonlinear systems may
be unreliable, especially in case of chaotic systems [13]. When
a trajectory of a dynamical system computed using standard
numerical tools looks chaotic, we cannot be sure that the
system is indeed chaotic. Computation of chaos detectors,
like Lyapunov exponents, also does not provide conclusive
answers. An observed trajectory may be a transient to a
periodic steady-state or may by a result of numerical errors.
Similarly, even if in simulations a steady state is periodic it
does not mean that there are no chaotic trajectories in the
system. An example of topological chaos existing in a period–
3 window will be shown in Section IV.

II. CHUA’S CIRCUIT WITH A CUBIC NONLINEARITY

The dynamics of Chua’s circuit with a cubic nonlinear-
ity [11] shown in Fig. 1 is defined by

C1ẋ1 = (x2 − x1)/R− g(x1),

C2ẋ2 = (x1 − x2)/R+ x3, (1)
Lẋ3 = −x2 −R0x3,

where g(z) = g1z + g2z
3. It is assumed that g1 < 0 and all

other parameters are positive. Electronic implementation of the
cubic nonlinearity using two multipliers and one operational
amplifier was described in [12].

C1C2 RNL

RR0

x1x2

x3

g(x1)

Fig. 1. Chua’s circuit with a cubic nonlinearity.

We consider the system (1) with the following set of
dimensionless parameters: C1 = 0.7, C2 = 7.8, L = 1.891,
R0 = 0.01499, g1 = −0.59, g2 = 0.02. Resistance R ∈
[1.9, 2.2] is treated as a bifurcation parameter.
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Fig. 2. Bifurcation diagram for Chua’s circuit with a cubic nonlinearity, R ∈ [1.9, 2.2].

For R > −g−11 −R0 ≈ 1.6799, there exist three equilibria:
the origin and a pair of symmetric equilibria

±x? = ±x?1
(
1, R0(R0+R)−1,−(R0+R)−1

)
, (2)

where x?1 =
√
−(g1 + (R+R0)−1)g−12 . In the considered

parameter range R ∈ [1.9, 2.2] the origin is unstable with
one unstable direction and two stable directions. Equilibria
±x? are stable for R > R̄ ≈ 2.222641 and unstable for
R ≤ R̄ with one stable direction and two unstable directions.
When R is changed one can see a typical series of period
doubling bifurcations leading to chaotic behavior. For R > R̄
one observes convergence to one of the stable fixed points
±x?. They lose stability at R = R̄ and two stable periodic
orbits (one around each symmetric equilibrium) are born.

Fig. 2 shows a bifurcation diagram of the return map
PR defined by the half-plane ΣR = {x = (x1, x2, x3) ∈
R3 : x1 = x?1, ẋ1 ≥ 0}, i.e. PR : ΣR 7→ ΣR is defined as
PR(x) = ϕ(τ(x), x), where ϕ(t, x) is the trajectory of (1)
starting at x, and τ(x) is the return time after which the
trajectory ϕ(t, x) returns to ΣR. Note that the half plane ΣR

is selected to contain the equilibrium x?. In consequence, ΣR

and PR depend on R. We have considered 6001 parameter
values selected uniformly from the interval R ∈ [1.9, 2.2].
For each parameter value 10000 iterations are recorded after
skipping 1000 iterations. The variable range x2 ∈ [0, 0.62] is
divided into 1000 bins of equal length and bins are plotted
using different shadows of gray according to the number of
times a trajectory visits each bin.

In Fig. 2 one can see that for R close to 2.2 the trajectory
of the return map is a single point, which corresponds to a
periodic trajectory of (1) intersecting ΣR once per period.
When R is decreased this orbit loses stability and a stable

orbit with the period approximately two times longer is born.
For smaller R one can see period-4 and period–8 windows.
The sequence of period-doubling bifurcations leads to chaotic
behavior in the form of a spiral attractor [11] (see also
Fig. 7(a)). When R is further decreased two symmetric spiral
attractors collide and a double–scroll attractor is observed (see
Fig. 11(a)).

In the following sections, using interval arithmetic based
tools we rigorously analyze dynamical behaviors of system (1)
for several values of the bifurcation parameter R. Selected
value are denoted in Fig. 2 as red solid lines. We will study
the behavior of the system for two parameter values from the
periodic region (R = 2.2, R = 2.15), and three parameter
values from the chaotic region, including a parameter value
from the largest period-3 window (R = 2.119), and parameter
values for which a spiral attractor (R = 2.1) and a double-
scroll attractor (R = 2.0) are observed.

III. PERIODIC REGION

Let us first consider the periodic region, which is observed
roughly for R > 2.1365 (compare Fig. 2). In simulations, for
R = 2.2 trajectories converge to a periodic orbit with one
turn around x? (see Fig. 3(a)). We will show that in this case
for the corresponding return map there exist a trapping region
which contains a single fixed point attracting all trajectories
initiated in this trapping region.

Let us consider the return map P1 defined by the half-plane
Σ1 = {x = (x1, x2, x3) : x1 = 2.63183, ẋ1 ≤ 0}. In the first
step of analysis we find a possibly large trapping region for the
map P1. A trapping region is a set in the domain of the map
which is mapped into itself. The trapping region candidate, T ,
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Fig. 3. (a) a trajectory (blue) of Chua’s circuit converging to a stable periodic
orbit (red) for R = 2.2; the three equilibria are plotted using star symbols,
(b) The border of the trapping region T (red) for P1, its image computed
non-rigorously (green), and the stable fixed point (×) in T .

and its image, P1(T ), computed non-rigorously, are shown in
Fig. 3(b) in red and green, respectively.

In order to show that T is indeed a trapping region we have
to prove that P1(T ) ⊂ T . This is done by covering T by boxes
vk (two-dimensional interval vectors), finding enclosures yk

of P1(vk), and verifying conditions yk ⊂ T . Evaluation of
P1 is done by rigorous integration of the vector field using
the Lohner method [14]. Integration procedure was written in
C++ using Profil/BIAS packages [15] for interval arithmetic
computations. For details how to implement covering process
using the generalized bisection method see [16], [17]. To speed
up computations the border and the interior of T are handled
separately. It is computationally more efficient to prove that
the image of the border of T is enclosed in T and that the map
is well defined on T than that the image of T is enclosed in T
(compare [17]). The computer assisted proof that P1(T ) ⊂ T
required covering of the border and interior of T by 200 and
197 boxes, respectively.

All trajectories initiated in the trapping region stay there
forever, and in consequence the trapping region must contain
an attractor (or multiple attractors).

Non-transient dynamics takes place in the invariant part
of the trapping region. We say that a point belongs to the
invariant part Inv(T ) of a set T if there exist a trajectory
entirely enclosed in T passing through this point. To find
an enclosure of Inv(T ) we use the graph representation of
the dynamics of the map [18], [16], [17]. First, the trapping
region is covered by boxes of a given size and non-forbidden
connections between the boxes are found. We say that the
connection (vi,vj) between the boxes vi and vj is forbidden

if P (vi) ∩ vj = ∅. Boxes which are not a starting point of
any connection and boxes which are not an ending point of
any connection are removed from the graph. This process is
continued until no more boxes can be removed. To improve
the approximation of the invariant part one may apply a finer
division of the remaining boxes and redo the computations.
This procedure has been applied to the set T . As a result we
have found a set of 621 boxes of size (1/6400) × (1/6400)
covering the invariant part. This set of boxes is enclosed in
the interval vector w having area less than 5·10−8. In the final
step we prove that w contains a single fixed point attracting all
trajectories starting in T . This is done by applying the interval
Newton method [19] to prove the existence of a fixed point.
Next, we verify that eigenvalues of the Jacobian matrix of the
return map (evaluated on w) are enclosed in the unit circle
which shows that the fixed point is stable. Lastly, we prove
that the matrix norm of the Jacobian matrix is smaller than
one. It follows from the Banach fixed-point theorem that all
trajectories starting in w converge to this fixed point.

Thus, for R = 2.2 we have a complete description of the
dynamics of the return map P1 in T : all trajectories starting
in T converge to the unique fixed point in T .

Let us now consider the case R = 2.15 for which, in
simulations, trajectories converge to a periodic orbit with two
turns around the equilibrium x? (see Fig. 4(a)). This periodic
orbit corresponds to a period-2 orbit of the return map.

We have proved that for R = 2.15 the polygon T shown in
Fig. 4(b) is a trapping region for the return map P2 defined by
the plane Σ2 = {x = (x1, x2, x3) : x1 = 2.53085, ẋ1 ≤ 0}.
During the proof, the border and the interior T were covered
by 691 and 192 boxes, respectively.

In this case, the invariant part is more complex than in the
previous case and finding its accurate enclosure is more time-
consuming. To uncover the underlying dynamical structure,
we find an enclosure of the nonwandering part of trapping
region. To eliminate parts containing non-recurrent dynamics,
we remove boxes not belonging to any cycle in the graph
(compare [17]). This procedure splits the invariant part into
three connected components shown in Fig. 4(c). Using the
interval Newton operator we prove that the two outer com-
ponents contain a single period–2 orbit. Using the Banach
fixed-point theorem we show that all trajectories with initial
conditions belonging to these components are attracted to this
period–2 orbit. We also prove that the middle component
contains a single unstable fixed point. One can show that if a
trajectory stays in a neighborhood of this fixed point forever,
it has to converge to it. This can be done using a perturbation
method to analyze dynamical behavior around a hyperbolic
fixed point. It is clear that if a trajectory leaves a neighborhood
of the fixed point, it will converge to the period-2 orbit.

In summary, we have shown that for R = 2.15 the dynamics
of P2 in the set T can be described as follows. There are
two periodic solutions in T : the stable period–2 orbit and
the unstable fixed point. Additionally, Inv(T ) contains the
unstable manifold of the fixed point which connects it with
the period–2 orbit. All trajectories starting in T converge to
one of the two periodic solutions. Trajectories converging to
the unstable fixed point will not be observed in simulations.
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Fig. 4. (a) a trajectory (blue) of Chua’s circuit converging to a stable periodic
orbit (red) for R = 2.15, (b) the border of the trapping region T (red) for P2,
its image computed non-rigorously (green), and the stable period–2 orbit (×),
(c) an enclosure of the non-wandering component of T (blue).

IV. PERIOD–3 WINDOW

After an infinite number of period-doubling bifurcations the
system enters the chaotic region. For most parameter values
belonging to the chaotic region one observes chaotic steady-
state behavior. However, in the chaotic region there are also
infinitely many periodic windows. The widest periodic window
exists for R slightly smaller than 2.12 (compare Fig. 2). Let
us consider the case R = 2.119 for which in simulations one
observes convergence of trajectories to a periodic orbit with
three turns around x? (see Fig. 5(a)).

A trapping region candidate T for the return map P3 defined
by Σ3 = {x = (x1, x2, x3) : x1 = 2.46368, ẋ1 ≤ 0} is
shown in Fig. 5(b). The candidate was constructed to enclose
the period–3 stable orbit. The computer assisted proof that
P3(T ) ⊂ T required covering of the border and interior of T
by 691 and 192 boxes, respectively.

Now, we show that the dynamics in the trapping region
is chaotic in the topological sense, i.e. that the topological
entropy of the return map is positive. There is a number
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Fig. 5. (a) a trajectory (blue) of Chua’s circuit converging to a stable periodic
orbit (red) for R = 2.119, (b) the border of the trapping region T (red) for
P3, its image computed non-rigorously (green), and stable period–3 orbit (×),
(c) sets Q1, Q2 supporting symbolic dynamics for P3.

of methods which can be used to prove that a given map
is topologically chaotic. One possible approach is via the
Shilnikov’s theorem, which states that it there exists a ho-
moclinic loop of the saddle focus and some additional con-
ditions hold then there are countable many saddle periodic
orbits in a neighborhood of the homoclinic loop. Under these
conditions there exists a topological Smale’s horseshoe for an
appropriately defined return map, and hence the topological
entropy of the system is positive. However, the existence of a
homoclinic loop can be usually proved only for some unknown
parameter value belonging to a given interval. This approach
has been used in [7] to prove that Chua’s system with a
piecewise linear nonlinearity is chaotic. In this work, we use
the method based on proving the existence of covering rela-
tions [20], which will be described below. An approach based
on extending Conley index techniques for constructing semi-
conjugate symbolic dynamical systems has been presented
in [21]. A semi-automatic method to locate complex covering
relations based on a graph representation of the dynamics has
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been proposed in [22]. A method to obtain rigorous lower
bound for the topological entropy of planar diffeomorphisms
based on the geometry of stable and unstable manifolds of
hyperbolic periodic points has been presented in [23]. This
method has an advantage that accurate estimates of the true
entropy can be obtained. However, applying it in a rigorous
way to return maps associated with continuous dynamical
systems is difficult due to the necessity of finding rigorous
enclosures of stable and unstable manifolds [24].

Let us briefly recall the method of covering relations
(cf. [20], [8]). Let Q1, Q2, . . . , Qp be pairwise disjoint sets.
Each set Qi is a topological rectangle with predefined vertical
and horizontal edges. We say that Qi P -covers Qj under a
continuous map P if P (Qi) is enclosed in the interior of a
topological stripe defined by horizontal edges of Qj in such
a way that images of vertical edges of Qi lie geometrically
on the opposite sides of Qj . Examples are shown in Fig. 6.
Covering relations are also referred to as correctly aligned
windows [25].

Q1
Q2

P(Q1)

P(Q2)

Fig. 6. Covering relations example: Q1 P -covers Q2, Q2 P -covers Q1 and
itself, vertical edges and their images are plotted in black.

From the existence of covering relations involving P one
can obtain a lower bound for the topological entropy of P .
The topological entropy h(P ) is not less than the logarithm
of the dominant eigenvalue of the transition matrix A ∈ Rp×p

defined as Aij = 1 if Qi P -covers Qj , and Aij = 0 otherwise
(see [26]).

Candidate topological rectangles Q1 and Q2 found by a
“trial-and-error” method are shown in Fig. 5(c). Their positions
were adjusted so that nontrivial covering relations between Q1

and Q2 hold. It has been shown that Q1 P3-covers both Q2

and itself, while Q2 P3-covers Q1. In the proof, the borders
of Q1 and Q2 are covered by 5550 boxes, enclosures of their
images are found, and it is verified that all conditions involving
the three covering relations are satisfied. Covering relations
between Q1 and Q2 correspond to the transition matrix

A1 =

(
1 1
1 0

)
, (3)

which defines the golden mean shift on two symbols. The
dominant eigenvalue of A1 is λ = 0.5 · (

√
5 + 1) ≈ 1.618. It

follows that h(P3) ≥ log λ > 0.4812.
Let us note that vertical edges of sets Q1 and Q2 are

very close to positions of the stable period–3 orbit. This was
unintentional; as mentioned before, the sets Q1 and Q2 were
selected using the “trial-and-error” approach. However, this
example shows that knowing positions of short periodic orbits
may be helpful in finding good candidates for sets supporting
complex symbolic dynamics (compare with [23]).

Simulations indicate that trajectories starting in T with
probability one converge to the stable period–3 orbit. However,

from the existence of symbolic dynamics we also know that
there are complex trajectories in T visiting sets Q1 and Q2

in any order allowed by the transition matrix A1. The number
of fixed points of the pth iterate of the map is not less than
the number of periodic sequences of length p admissible by
the transition matrix. Since the number of such sequences for
large p is close to λp it follows that the number of periodic
orbits in T grows with the period p not slower than 1.618p/p.

Note that dynamical behaviors in this case are completely
different from the ones existing for the periodic region. In
the periodic region all trajectories converge to a periodic
solution. For the period-3 window there are infinitely many
periodic trajectories and there exist chaotic trajectories passing
arbitrarily close to any periodic orbit. This example shows we
have to be careful when we formulate conclusions based on
results of standard numerical simulations. From the fact that in
simulations we observe convergence of trajectories to a single
periodic solution it does not follow that dynamical behaviors
are simple—topological chaos may exist, like in this example.

V. ANALYSIS OF THE SPIRAL ATTRACTOR

Let us now consider the case R = 2.1 for which in
simulations a spiral attractor is observed (see Fig. 7(a)).
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Fig. 7. (a) a trajectory of Chua’s circuit for R = 2.1, (b) a trajectory of the
return map P4 (blue) and the border of the trapping region T1 ∪ T2 (red).

Let P4 be a return map defined by the plane Σ4 = {x =
(x1, x2, x3) : x1 = 2.42058}. The trapping region T = T1 ∪
T2 for the map P4 is plotted in Fig. 7(b). T encloses the
numerically observed attractor. The computer assisted proof
that P4(T ) ⊂ T requires covering of the border and the interior
of T by 1251 and 454 boxes, respectively.

Now, we show that the dynamics in the trapping region is
chaotic in the topological sense. Let us consider the return map
P5 defined by the half-plane Σ5 = {x = (x1, x2, x3) : x1 =
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2.42058, ẋ1 < 0}. Candidate sets Q1 and Q2 are shown in
Fig. 8(a). It has been shown that there are three covering
relations between sets Q1 and Q2 corresponding to the golden
mean shift. It follows that h(P5) > 0.4812.

The sets Q1 and Q2 cover only a small part of the
attractor. Therefore, one can expect that it should be possible
to find more complex symbolic dynamics with larger entropy.
A candidate consisting of five sets covering a larger part of
the numerical trajectory is shown in Fig. 8(b). This candidate
was found with the help of a semiautomatic method to locate
complex symbolic dynamics [22]. It was proved that the
transition matrix is

A2 =
��

��
�
��

�

, (4)

where zeros and ones are denoted as white and black squares,
respectively. Since the dominant eigenvalue of A2 is λ ≈
1.7407 the lower bound is improved to h(P5) > 0.5542.
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Fig. 8. Sets supporting symbolic dynamics for P5 with the transition matrix
A1 (a), A2 (b), and A3 (c); vertical edges are plotted in black, a trajectory
is plotted in gray.

One can still improve the estimate of the topological entropy
of P5 by introducing a finer representation of the dynamics in

the lower-left corner of the attractor. Indeed, it has been proved
that there are 12 covering relations between sets Q1, Q2, . . . ,
Q7 shown in Fig. 8(c). These covering relations correspond to
the transition matrix

A3 =

�
�

�
���

���
��

�

. (5)

The dominant eigenvalue of A3 is λ > 1.8138 and hence

h(P5) > log 1.8138 > 0.5954. (6)

To evaluate the bounds obtained, let us now estimate what
is the true topological entropy of P5. The estimate is based
on the number of short periodic orbits. Short periodic orbits
can be found using the monitoring trajectory approach. In this
method one selects a small positive number δ and searches
a trajectory (x(i))Ni=1 for δ-pseudo periodic orbits, i.e. pieces
of the trajectory such that the distance between the x(i) and
x(i+p) is smaller than δ. In a neighborhood of a δ-pseudo
periodic orbit there may exist a true periodic orbit. Let us
assume that (x̄(i), x̄(i+1), . . . , x̄(i+p−1)) is a δ-pseudo periodic
orbit of length p. An approximate position of the periodic orbit
can be found applying the Newton method to locate zeros of
the map F : Rp 7→ Rp defined by

[F (z)]k = x((k+1) mod p) − P (x(k)) for 0 ≤ k < p,

where z = (x(0), x(1), . . . , x(p−1)) with the initial condition
z(0) = (x̄(i), x̄(i+1), . . . , x̄(i+p−1)). The existence of the
periodic orbit can be verified using the interval Newton method
applied to an interval vector containing the approximate
position. Once the existence is proved the interval vector
containing the orbit is recorded. This information is used in
further computations to verify whether periodic orbits located
in the search process were not already found before. Using
this method we have found 42995 periodic orbits with periods
p ≤ 20. It has been verified that all these orbits are unstable.
The twelve shortest periodic orbits are plotted in Fig. 9.

Fig. 9. Shortest unstable periodic orbits for Chua’s circuit embedded in the
spiral attractor; axes range: (x1, x2) ∈ [−3.5, 3.5]× [−0.7, 0.7].

Under certain assumptions the topological entropy h(P ) of
the map P can be computed as

h(P ) = lim
p→∞

1

p
log Np, (7)
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where Np is the number of fixed points of P p (compare [26]).
The expression hp = 1

p log Np is often used as an estimate
of the topological entropy, even when the assumptions under
which (7) holds are not satisfied.

The numbers Np of fixed points of P p
5 are plotted in

Fig. 10(a) as a solid blue curve. For comparison we also plot
the number of fixed points of P p

5 obtained from the existence
of symbolic dynamics, which has been proved before. The
number Np of fixed points of P p

5 corresponding to the exis-
tence of the symbolic dynamics with the transition matrix A
can by computed as the trace (the sum of diagonal entries) of
the matrix Ap (see [27]). The results obtained for transition
matrices A1, A2 and A3 are plotted in Fig. 10(a) as red, green
and magenta dashed lines, respectively. Note that with the
transition matrix A3 we capture most of the periodic orbits
found in the trajectory monitoring approach.
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Fig. 10. (a) the number Np of fixed points of P p
5 found using trajectory

monitoring approach (blue solid line) and corresponding to symbolic dynamics
with transition matrices A1, A2, and A3 (red, green and magenta dashed
lines), (b) estimates hp of the topological entropy P5 of based on the number
of short orbits.

Estimates hp obtained from the number of found periodic
orbits are shown in Fig. 10(b) as a solid blue curve. The
results for p ∈ [10, 20] oscillate in the interval [0.640, 0.645],
which indicates that the true topological entropy belongs to
this interval. Note that the rigorous lower bound (6) is close
to this estimate.

VI. ANALYSIS OF THE DOUBLE-SCROLL ATTRACTOR

Let us now consider the case R = 2.0, where in simulations
one observes a double-scroll attractor (compare Fig. 11(a)).
Since trajectories scroll around both fixed points, it is more
convenient to use a return map defined by two planes. We will
use the return map P67 defined by the union of the planes
Σ6,7 = {x = (x1, x2, x3) : x1 = ±2.1647}.

An example trajectory of the return map P67 is shown in
Fig. 11(b). The plot is composed of four parts R1, R2, R3,
and R4. The parts R1 and R2 correspond to intersections
with Σ6 while R3 and R4 correspond to intersections with Σ7.
Points for which the previous iteration and the next iteration
belong to the same plane as the current one are plotted in blue.
Points whose image (preimage) belong to the different plane
then the current one are plotted in red (black). Points in R2

go to R1. Blue points in R1 go to the blue spiral in R2, while
red points in R1 go to the black spiral in R4. One can see that
the dynamics of the double-scroll attractor is richer than for
the spiral attractor, where the red and black parts are missing
and the blue spiral is not fully developed (cf. Fig. 7(b)).
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Fig. 11. (a) a trajectory of Chua’s circuit for R = 2.0, (b) intersection
of a trajectory with the planes Σ6 (the lower half of the plot) and Σ7 (the
upper part of the plot), (c) border of the trapping region candidate T =
T1 ∪ T2 ∪ T3 ∪ T4 for the map P67, T1 ∪ T2 ⊂ Σ6, T3 ∪ T4 ⊂ Σ7.

A candidate T for a trapping region shown in Fig. 11(c)
is the union of polygons Tk, each enclosing one part of
numerically observed trajectories. Polygons T3, T4 ⊂ Σ7

are symmetric to T1, T2 ⊂ Σ6. Polygons T1 and T2 were
constructed in such a way that for test points vk ∈ T1 ∪ T2
the conditions P67(vk) ∈ T are verified in non-rigorous
computations. These conditions, if satisfied, indicate that T
is a good candidate for a trapping region.

Applying the procedure to prove that T is a trapping region
results in a covering of the border of T1∪T2 composed of 6320
boxes vk. For 6288 boxes the condition P67(vk) ⊂ T holds.
However, the procedure fails for 32 boxes lying close to the
region in T1 where P67 is discontinuous. The discontinuity is a
consequence of the fact that the double scroll attractor contains
the origin, an unstable equilibrium. There are trajectories
starting in T1 which pass arbitrarily close to the origin. These
trajectories are repelled from the origin along one of the two
directions of its one-dimensional unstable manifold and reach
either T2 or T4 (cf. Fig. 11(b)). It follows that it is not possible
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to prove that P67(T1) ⊂ T using standard rigorous integration
methods. Rigorous evaluation of the return map for boxes
containing discontinuity points requires developing procedures
handling trajectories passing arbitrarily close to an equilibrium
with infinitely large return times. The case of piecewise linear
systems was considered in [9], where the existence of a
trapping region for the double-scroll attractor was proved.
For general nonlinear systems the unstable manifold is not a
straight line and a different approach has to be used (see [28]).
This problem is left for future study.

To investigate the existence of complex symbolic dynamics
we consider the map P89 defined by the union of half-planes
Σ8,9 = {x = (x1, x2, x3) : x1 = ±2.1647,±ẋ1 < 0}, i.e. we
limit ourselves to the polygons T1 and T3.

First, we will consider the case of covering relation between
sets belonging to a single plane. Candidate rectangles Q1, Q2

and Q3 are shown in Fig. 12(a). Due to very strongly repelling
in Q1 the set Q1 P89-covers all three sets. The set Q2 P89-
covers Q1 and Q3 P89-covers Q2. The existence of these
five covering relations has been proved rigorously. During the
proof borders of sets Q1, Q2 and Q3 were covered by 761
boxes. The corresponding transition matrix

A4 =
���
�
�

(8)

has the dominant eigenvalue λ > 1.8393 and hence: h(P89) >
log 1.8393 > 0.6093.
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Fig. 12. Sets supporting symbolic dynamics for P89 with the transition matrix
A4 (a), and A5 (b).

Let us note that although the symbolic dynamics with
the transition matrix A4 involves a single scroll only, the
corresponding bound is better than the best bound (6) obtained
for the spiral attractor.

To improve lower bounds we will use covering relations
involving both scrolls. Candidate sets Q1, Q2, . . . , Q8 ⊂ Σ8

are shown in Fig. 12(b). These sets together with their symmet-
ric copies Q′1, Q

′
2, . . . , Q

′
8 ⊂ Σ9 support complex symbolic

dynamics. The set Q1 is mapped by P89 into T3 while the
remaining sets are mapped into T1. We have proved the
existence of 34 covering relations between sets Qk and Q′k
which can be represented as the following transition matrix

A5 =

�����
�����
�
�
��

�
�
�

�����
�����
�
�
��

�
�
�

. (9)

The dominant eigenvalue of the transition matrix is larger than
2.2774 and hence

h(P89) > log 2.2774 > 0.823. (10)

This shows that, as expected, the dynamics of the double scroll
attractor is richer than the dynamics of the spiral attractor.

We have used the monitoring trajectory approach to find
short periodic orbits embedded in the double scroll attractor.
The search procedure returned 602191 periodic orbits with
periods p ≤ 20. This is significantly more than for the spiral
attractor with 42995 periodic orbits found (85990 for two
coexisting spiral attractors). Shortest periodic orbits are plotted
in Fig. 13. Two of these orbits are self-symmetric with respect
to the origin. The remaining are 10 pairs of asymmetric orbits.

Fig. 13. Shortest periodic orbits for Chua’s circuit embedded in the double-
scroll attractor; axes range: (x1, x2) ∈ [−3, 3]× [−0.5, 0.5].

Fig. 14(a) shows the number Np of fixed points of P p
89

versus the period p. The results obtained from the monitoring
trajectory technique are plotted as a blue solid line. The results
corresponding to the existence of symbolic dynamics with
the transition matrices A4 and A5 are plotted as red and
green dashed lines, respectively. Let us note that for p ≥ 17,
the number of periodic orbits found using the monitoring
trajectory approach is lower than the number of periodic orbits
corresponding to the transition matrix A5. This is due to
the amount of existing orbits—very long computation time is
needed to pass sufficiently close to all short periodic orbits to
guarantee the convergence of the Newton method. Fig. 14(a)
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shows estimates hp of the entropy of the return map P89 based
on Np. The estimates reach hp ≈ 0.964 for p ∈ {8, 9, 10} and
drop fast for p ≥ 11. It follows that for the double-scroll
attractors one cannot draw conclusions about the true value of
the topological entropy based on the number of periodic orbits
found using the monitoring trajectory approach.
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Fig. 14. (a) the number Np of fixed points of P p
89, (b) estimates hp of the

topological entropy of P89 based on the number of short orbits.

VII. CONCLUSIONS

Dynamics of Chua’s circuit with a cubic nonlinearity has
been analyzed for several parameter values in the periodic
and chaotic regions. For two parameters values in the periodic
region a complete characterization of dynamical phenomena
has been carried out. In all cases apart from the double-scroll
attractor, trapping regions for the corresponding return map
have been constructed. It was explained why it is impossible
to prove the existence of a trapping region in the case of
the double-scroll attractor using available rigorous integration
methods. This problem is left for future study. Accurate lower
bounds of the topological entropy have been found and it has
been proved that Chua’s circuit is chaotic in the topological
sense for the cases of the stable period-3 orbit, the spiral
attractor and the double scroll attractor. The existence of many
(hundreds of thousands) unstable periodic orbits embedded in
chaotic attractors have been proved using the combination of
the interval Newton operator and the monitoring trajectory
approach. The results have been used to estimate the true value
of topological entropy.
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