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Study of periodic solutions in discretized
two-dimensional sliding-mode control systems

Zbigniew Galias, Member, IEEE, Xinghuo Yu, Fellow, IEEE

Abstract—The existence of periodic solutions in discretized
two-dimensional equivalent control based sliding mode control
systems is studied. Admissibility conditions for the existence of
periodic solutions with specific symbol sequences are derived, and
admissibility regions for short periodic sequences are found. It is
shown that for certain parameter values there exist arbitrarily
long periodic orbits for arbitrarily small discretization steps.
Theoretical results are illustrated with simulation examples.

Index Terms—sliding mode control, discretization, periodic
solutions, chattering.

I. INTRODUCTION

SLIDING mode control (SMC) modifies dynamics of a sys-
tem by applying a high-frequency switching control [1].

A discontinuous control law is designed in such a way that in a
vicinity of the prescribed switching manifold trajectories move
toward the manifold. In the sliding mode a trajectory remains
on the sliding surface for all time. This requires in general
an infinite switching frequency. In practical applications, as a
result of inherent delays of applying the discontinuous control
signal a trajectory after intersecting the switching manifold
leaves this manifold. This can lead to chattering, loss of energy
and other unwanted phenomena like excitation of undesired
dynamics. Therefore, study of discretization effect of SMC
systems is of high practical importance. It helps to evaluate
quantitatively discretization behaviors and develop preventive
measures of unwanted phenomena.

It has been reported that discretization of SMC may cause
irregular behaviors such as periodic trajectories and strange
attractors [2], [3], [4], [5]. In [6], it was shown that for the
Euler’s discretization, for sufficiently small h, each trajectory
approaches the sliding manifold and converges to a period–2
cycle with an amplitude proportional to h. In [2], interesting
phenomena including the existence of periodic solutions with
different periods were observed in an equivalent control based
SMC system discretized using zero-order holder (ZOH).

Dynamical properties of discrete systems arising by ZOH
implementation of the SMC control strategy for two-
dimensional systems have been analysed in [7]. Accurate
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bounds for the chattering amplitude were derived, and it was
shown that for sufficiently small discretization steps there
cannot be more than two iterations without a switching taking
place.

In this work we analyse this discrete system in terms of
the existence of periodic solutions. We show that periodic
orbits are fully characterized by their switching patterns.
Admissibility conditions for the existence of periodic orbits
with a given symbol sequence are formulated. This result is
used to locate in the parameter space regions of existence of
periodic orbits with specific switching patterns. Certain classes
of periodic orbits with arbitrary length are considered. It is
shown that under certain assumptions some of them exist for
arbitrarily small discretization steps. The existence of complex
switching patterns is confirmed in simulations.

II. ZOH DISCRETIZATION OF THE 2D EQUIVALENT
CONTROL SMC SYSTEM

Let us consider a single input two-dimensional linear system
in the controllable canonical form

ẋ = Ax+ bu =
(

0 1
−a1 −a2

)
x+

(
0
1

)
u, (1)

and the equivalent control based SMC: u(x) =
−(cT b)−1cTAx(t)− (cT b)−1α sgn(cTx), where c = (c1, 1)T ,
c1 > 0, α > 0, sgn(x) = 1 for x ≥ 0 and sgn(x) = −1
for x < 0. The switching function cTx defines the sliding
manifold L = {x : cTx = 0}.

The sliding mode control system is described by

ẋ = Ax+ b(−cTAx− α sgn cTx). (2)

Assume that the control system (2) is implemented by a zero-
order holder at tk = kh, with the discretization step h > 0.
The control signal uk = −cTAx(k)−α sgn

(
cx(k)

)
is constant

for t ∈ [tk, tk+1]. Let us denote x(k) =
(
x

(k)
1 , x

(k)
2

)T = x(tk).
It can be shown [7] that the update equation is(
x

(k+1)
1 , x

(k+1)
2

)
=
(
x

(k)
1 +vx(k)

2 −αγ1rk, dx
(k)
2 −αγ2rk

)
,

where (γ1, γ2)T =
∫ h
0

eAτ bdτ , v = γ2 − γ1(c1 − a2), d =
1−a1γ1− c1γ2, and the symbol sequence r = (r0, r1, r2, . . .)
is defined by rk = sgn

(
cx(k)

)
.

III. ANALYSIS OF THE DISCRETIZED SYSTEM

Let us change coordinates in such a way that the symbol rk
depends on a single variable: y(k)

1 = c1x
(k)
1 +x(k)

2 , y(k)
2 = x

(k)
2 .

In these coordinates the update equation reads

(y(k+1)
1 , y

(k+1)
2 ) = (y(k)

1 +ay(k)
2 −erk, dy

(k)
2 −frk), (3)
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where rk = sgn
(
y
(k)
1

)
, a = (c1a2 − c21 − a1)γ1, f = αγ2,

e = (c1γ1 + γ2)α, and d = 1− a1γ1 − c1γ2.
Let us recall main results presented in [7]. Given the symbol

sequence r = (r0, r1, . . .) the formula for y(k) is

y
(k)
1 = y

(0)
1 + ay

(0)
2

k−1∑
j=0

dj − af
k−2∑
j=0

rj

k−2−j∑
i=0

di − e
k−1∑
j=0

rj ,

(4a)

y
(k)
2 = dky

(0)
2 − f

k−1∑
j=0

dk−1−jrj . (4b)

By differential analysis one can easily obtain the following
estimates useful for small h: γ1(h) = 0.5h2 + o(h3), γ2(h) =
h + o(h2), a(h) = 0.5(a2c1 − c21 − a1)h2 + o(h3), e(h) =
αh+ o(h2), f(h) = αh+ o(h2), and d(h) = 1− c1h+ o(h2).

Since α > 0 and c1 > 0 it follows that for sufficiently small
h the following conditions are satisfied: γ1(h)>0, γ2(h)>0,
e(h)>0, f(h)>0, d(h)<1. Observe that when h goes to 0,
the parameters e, f and 1− d converge to zero as h, while a
converges to zero as h2.

The following result provides conditions under which γ1,
γ2 and in consequence also e and f are positive.

Lemma 1: If a2
2 ≥ 4a1 and h > 0 then γ1 > 0 and γ2 > 0.

If a2
2 < 4a1 and h ∈ (0, π/ω), where ω =

√
a1 − a2

2/4 then
γ1 > 0 and γ2 > 0.

The next lemma states that ∆ = e(1−d) + af ≥ 0.
Lemma 2: If a1 > 0, a2 = 0 and cos

√
a1h = 1 then d = 1

and ∆ = e(1− d) + af = 0. Otherwise ∆ > 0.
For |d| > 1 the system is unstable. The case d= 1 for the

system (3) is analysed in [9]. In this work, we focus on the
case |d|< 1. In the remaining part of this paper, we assume
that e > 0, f > 0, |d| < 1, and ∆ > 0. As explained before
these conditions hold for sufficiently small h.

The following two theorems [7] show that for small h the
dynamics of the system depends on the sign of a. The first
theorem handles the case af ≤ 0.

Theorem 1: Assume that af ≤ 0, |d| < 1, ∆ = e(1 −
d) + af > 0. For arbitrary initial conditions the trajectory
converges to a period–2 orbit.

The second theorem considers the case af > 0. It provides
conditions under which a trajectory spends at most two itera-
tions on either side of the sliding surface.

Theorem 2: Let us assume that 0 ≤ d < 1, af > 0, af(1+
d)d < e(1−d), and af(1 + 4d+ 4d2 + 2d3) < e(1 +d). Then
there exists m such that rm+2k 6= rm+2k+1 for each k ≥ 0.

It can be shown that for sufficiently small h > 0 the
assumptions of Theorems 1 or 2 are satisfied. It follows that for
arbitrary values of parameters of the control system (2) there
exists h̄ > 0 such that if h ∈ (0, h̄) then the trajectory after
a sufficient number of iterations spends at most two iterations
on each side of the sliding surface.

IV. PERIODIC ORBITS

In this section, we characterize periodic orbits of the sys-
tem (3) in terms of corresponding symbol sequences and
derive results on admissibility of periodic orbits with various
switching patterns.

First, let us note that systems with fixed value of af/e are
equivalent from the dynamical point of view. This can be seen
by introducing new coordinates z(k)

1 = y
(k)
1 /e, z(k)

2 = y
(k)
2 /f .

In these coordinates the update equation is z(k+1)
1 = z

(k)
1 +

(af/e)z(k)
2 − rk, z(k+1)

2 = dz
(k)
2 − rk, where rk = sgn

(
z
(k)
1

)
.

We say that a symbol sequence r = (r0, r1, . . . , rn−1)
is admissible if there exists a point y(0) with the symbol
sequence r for which y(0) =y(n). The following lemma shows
that in a nondegenerate case the sum of symbols for admissible
sequences is zero.

Lemma 3: Let |d| 6= 1 and ∆ = e(1−d) + af 6= 0. If r =
(r0, r1, . . . , rn−1) is admissible then

∑n−1
j=0 rj = 0.

Proof: Since the sequence is admissible there exists
y(0) with the symbol sequence r such that y(0) = y(n).
From (4) applied to k = n it follows that a(1 − dn)y(0)

2 =
af
∑n−2
j=0 rj(1 − dn−1−j) + (1 − d)e

∑n−1
j=0 rj , and (1 −

dn)y(0)
2 = −f

∑n−1
j=0 d

n−1−jrj , where the equation (4a)
was multiplied by (1 − d). Eliminating y

(0)
2 from these two

equations yields (af + e(1− d))
∑n−1
j=0 rj = 0. Since ∆ 6= 0

the assertion follows.
The next result provides conditions under which a symbol

sequence is admissible.
Lemma 4: Let |d| 6= 1 and ∆ 6= 0. The symbol sequence

r = (r0, r1, . . . , rn−1) is admissible if and only if

n−1∑
j=0

rj = 0, max
k : rk=1

∆k(r) < min
k : rk=−1

∆k(r), (5)

where

∆k(r) =
af

1−d

1−dk

1−dn
n−1∑
j=0

dn−1−jrj +
k−2∑
j=0

(1−dk−1−j)rj


+ e

k−1∑
j=0

rj . (6)

The initial points of the corresponding periodic orbits are
given by y

(0)
1 ∈ [maxk : rk=1 ∆k(r),mink : rk=−1 ∆k(r)),

y
(0)
2 = −f(1− dn)−1

∑n−1
j=0 d

n−1−jrj .
Proof: First let us assume that r is admissible. Let y(0)

be an initial point with the symbol sequence r such that
y(0) = y(n). From Lemma 3 it follows that

∑n−1
j=0 rj =

0. From the proof of Lemma 3 it follows that y
(0)
2 =

−f(1 − dn)−1
∑n−1
j=0 d

n−1−jrj . Substituting y
(0)
2 into (4a)

yields y(k)
1 = y

(0)
1 −∆k(r). Since r is the symbol sequence for

y
(0)
1 it follows that sgn

(
y
(0)
1 −∆k(r)

)
= rk for 0 ≤ k < n, i.e.

y
(0)
1 −∆k(r) ≥ 0 if rk = 1 and y(0)

1 −∆k(r) < 0 if rk = −1. It
follows that maxk : rk=1 ∆k(r) ≤ y

(0)
1 < mink : rk=−1 ∆k(r)

and hence (5) is satisfied.
Now, let us assume that the conditions (5) holds. Let us

define y(0)
2 = −f(1−dn)−1

∑n−1
j=0 d

n−1−jrj and let us select
y
(0)
1 ∈ [maxk : rk=1 ∆k(r),mink : rk=−1 ∆k(r)). It follows

that sgn
(
y
(0)
1 −∆k(r)

)
= rk for 0 ≤ k < n, and hence r is the

symbol sequence for the initial point y(0). From the definition
of y(0)

2 it follows that y(n)
2 = y

(0)
2 and using (5) similarly as

in the proof of Lemma 3 one can show that y(n)
1 = y

(0)
1 . Thus
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y(0) is periodic with the symbol sequence r, and hence r is
admissible.

Lemma 5: Let |d| 6= 1 and ∆ 6= 0. Let us consider
two opposite symbol sequences, i.e. s = (s0, s1, . . . , sn−1),
r = (r0, r1, . . . , rn−1), with rk = −sk. The admissibility
conditions (5) are the same for s and r.

Proof: The assertion follows from ∆k(r) = −∆k(s).
Lemma 6: Let |d| 6= 1 and ∆ 6= 0. If y(n) = y(0) and

the symbol sequence r corresponding to y(0) has the principal
period p < n then y(p) = y(0).

Proof: Let us denote m = n/p. From (4b) it follows
that y((k+1)p)

2 = β1y
(kp)
2 + β2, where β1 = dp 6= 1 and

β2 = −f
∑p−1
j=0 d

p−1−jrj . Hence y(n)
2 = y

(mp)
2 = βm1 y

(0)
2 +

β2

∑m−1
j=o βj1 = βm1 y

(0)
2 + β2(1 − βm1 )/((1 − β1)). Since

y
(n)
2 = y

(0)
2 we obtain y

(0)
2 = β2/(1 − β1). It follows that

y
(p)
2 = β1y

(0)
2 + β2 = β2/(1− β1) = y

(0)
2 .

Now, we show that y(p)
1 = y

(0)
1 . Since y(p)

2 = y
(0)
2 , and the

principal period of r is p it follows from (4a) that

y
(kp)
1 =y

(0)
1 +k

(
ay

(0)
2

p−1∑
j=0

dj−af
p−2∑
j=0

sj

p−2−j∑
i=0

di−e
p−1∑
j=0

sj

)
,

Since y(mp)
1 = y

(0)
1 , the expression in the parentheses is zero,

and y(p)
1 = y

(0)
1 .

Below, we find admissibility conditions for some spe-
cific symbol sequences. To make the notation shorter
we will write for example (− + + − −+) instead of
(−1,+1,+1,−1,−1,+1) and (+− (−+)3) instead of (+−
−+−+−+).

A. Periodic orbits with three equal consecutive symbols

We will show that sequences containing three or more equal
consecutive symbols are not admissible for small h.

Lemma 7: A periodic symbol sequence r such that rk =
rk+1 = rk+2 for some k is not admissible for sufficiently
small h > 0.

Proof: From Theorem 1 it is sufficient to consider the
case af > 0. Let us consider a period–n symbol sequence
containing at least 3 equal consecutive symbols. The sequence
can be transformed by shifting and/or negating all symbols
into the form: r = (+1,−1,−1,−1, r4, . . . , rn−1). These
transformation do not change the admissibility conditions.
From Lemma 4 it follows that if the sequence r is admissible
then ∆0 < ∆3. We will show that ∆3 < ∆0 =0 for small h.

∆3 =
af

1−d

 1−d3

1−dn
n−1∑
j=0

rjd
n−1−j + 1−d2 − 1+d

− e
=af

(
1 + d+ d2

1 + d+ · · ·+ dn−1
·
∑n−1
j=0 rjd

n−1−j

1− d
+ d

)
− e.

Since
∑n−1
j=0 rj = 0 it follows that

(∑n−1
j=0 rjd

n−1−j)/(1− d)
is a polynomial in d. Hence, for small h the expression in
the parentheses is of order of a constant. It follows that the
first component of the above sum is of order h3, while the
second one is of order h. Therefore ∆3 < 0 for small h, and
in consequence r is not admissible for small h.

The condition ∆3 < 0 can be used to find the interval (0, h̄)
of discretization steps for which a given sequence with 3 or
more equal consecutive symbols is not admissible.

B. Periodic orbits of type (+− (−+)m)

Now, we prove that when af > 0 and h is sufficiently small
there exist an infinite number of admissible sequences. Let us
consider sequences of length n = 2+2m ≥ 6 with the pattern
r = (r0, r1, . . . , rn−1) = (+− (−+)m).

Lemma 8: Let |d| < 1, m ≥ 2, n = 2m + 2. The symbol
sequence r = (+−(−+)m) is admissible if and only if d 6= 0
and 0 < af < egn(d), where

gn(d) =
(1 + d)(1− dn)

1 + 2d(1 + d)− 2dn−4(1+d)− dn
, for d ∈ (0, 1),

gn(d) =
(1 + d)(1− dn)

1− 2dn−4 + 2dn−2 − dn
, for d ∈ (−1, 0).

Proof: For the sequence r we have ∆0 = 0, ∆1 = af(1−
2dn−2 + dn)/((1 + d)(1 − dn)) + e, ∆2+2p = 2af(d2p −
dn−2)/(1−dn), ∆2+2p+1 = af(1+2(1+d)(d2p+1−dn−2)−
dn)/((1 + d)(1− dn))− e for 0 ≤ p < m.

According to Lemma 4 the symbol sequence (+− (−+)m)
is admissible if and only if (a) ∆0 < ∆1, (b) ∆0 < ∆2+2p,
(c) ∆2+2p+1 < ∆1, (d) ∆2+2p+1 < ∆2+2k for k, p =
0, 1, . . .m− 1.

The condition (a) is equivalent to af(1−2dn−2+dn)/((1+
d)(1 − dn)) + e > 0. It holds provided that |d| < 1, e > 0,
af > 0. This can be seen by noting that for |d| < 1 we have
1 + d > 0, 1 − dn > 0, 1 − 2dn−2 + dn = (1 − dn−4) +
(dn−4 − 2dn−2 + dn) = (1− dn−4) + dn−4(1− d2)2 > 0.

The condition (b) can be written as 2af(d2p − d2m)/(1 −
dn) > 0. When d = 0 this condition does not hold for p =
m − 1. For d 6= 0, since |d| < 1, we have 1 − dn > 0 and
d2p−d2m = d2p(1−d2(m−p)) > 0 for 0 ≤ p < m. It follows
that the condition (b) is equivalent to af > 0.

The condition (c) can be written as afd(d2p − d2m)/(1 −
dn) < e. Since 1 − dn > 0 and d2p − d2m = d2p(1 −
d2(m−p)) ≥ 0 for 0 ≤ p < m the condition (c) holds for
d ∈ (−1, 0), e > 0, and af > 0. For positive d it is sufficient
to consider the case p = 0. Indeed for d ∈ (0, 1) and p > 0
we have d2p − d2m ≤ d0 − d2m. The condition (c) for p = 0
has the form afd(1 − dn−2)/(1 − dn) < e. Later, we will
show that it is satisfied when the condition (d) is fulfilled.

The condition (d) can be written as af(1+2d2p+1(1+d)−
2d2k(1+d)−dn)/((1+d)(1−dn)) < e. Since for |d| < 1 the
denominator (1 + d)(1− dn) is positive and −2d2k(1 + d) ≤
−2d2(m−1)(1+d) for 0 ≤ k ≤ m−1 it is sufficient to consider
the case k = m − 1. For positive d the condition (d) is the
most restrictive for p = 0. Indeed, when d ∈ (0, 1) we have
2d2p+1(1+d) < 2d(1+d) for 0 ≤ p < m. For p = 0 we obtain
af(1+2d(1+d)−2dn−4(1+d)−dn)/((1+d)(1−dn)) < e.
Since 1 > dn and 2d(1 + d) > 2dn−4(1 + d) the numerator
(1+2d(1+d)−2dn−4(1+d)−dn) is positive and we obtain the
first part of the definition of gn. For d < 0 the condition (d) is
the most restrictive for p = m− 1. Indeed, when d ∈ (−1, 0)
we have 2d2p+1(1 + d) < 2d2(m−1)+1(1 + d) for 0 ≤ p < m.
This leads to the inequality af(1−2dn−4+2dn−2−dn)/((1+
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(a) (+−) (b) (+ +−−) (c) (+3−3) (d) (+− (−+)2) (e) (+4−4)

(f) (+3 −3 +−) (g) (+− (−+)3) (h) (+5−5) (i) (+3 −3 +2−2) (j) (+2 −+2 −2 +−2)

(k) ((+2−2)2 +−) (l) (+− (−+)4) (m) (+6−6) (n) (−3 +3 −2 +−+2) (o) (+− (−+)5)

Fig. 1. Admissibility of symbol sequences with period n ≤ 12 in the (d, af/e) plane, d ∈ [−1.2, 1.2], af/e ∈ [−1.2, 2.4]

d)(1−dn)) < e. The expression (1−2dn−4 +2dn−2−dn) =
(1− dn−6) + (dn−6 − 2dn−4 + dn−2) + (dn−2 − dn) = (1−
dn−6) + dn−6(1− d2)2 + dn−2(1− d2) is positive since it is
a sum of three positive components and hence we obtain the
second part of the definition of gn.

It remains to show that for d ∈ (0, 1) the condition (c)
is weaker than the condition (d). It is sufficient to show that
af(1+2d(1+d)−2dn−4(1+d)−dn)/((1+d)(1−dn)) < e
implies that afd(1 − dn−2)/(1 − dn) < e. We will show
that for d ∈ (0, 1) the left hand side of the first inequality is
larger that the left hand side of the second inequality. In the
following we multiply both expressions by (1+d)(1−dn)/af .
The difference between the two expressions is (1+2d(1+d)−
2dn−4(1 + d)− dn)− (d(1− dn−2)(1 + d)) = 1 + d+ d2 −
2dn−4− 2dn−3 + dn−1 = (1− dn−5) + d(1− dn−5) + d2(1−
dn−6) + dn−5(1 − 2d2 + d4). It is positive as it is a sum of
four positive components. This completes the proof.

When n goes to infinity the functions gn decrease mono-
tonically (compare Fig. 2) to the function

g(x) =
{

(1 + d)/(1 + 2d+ 2d2), for d ∈ (0, 1),
1 + d, for d ∈ (−1, 0). (7)

It follows that for d ∈ (0, 1) ∪ (0, 1), 0 < af < eg(d) there
exist periodic orbits of type (+−(−+)m) with arbitrary m≥2.

−1 −0.5 0 0.5 1
0

0.5

1

m=∞

m=2

m=3
m=∞

m=2

m=3

 d

 af/e

Fig. 2. Admissibility of periodic orbits of type (+− (−+)m)

Combining this result with the observation that for suffi-
ciently small discretization steps f > 0, e > 0, d ∈ (0, 1)
and sgn(a) = sgn(a2c1 − c21 − a1), we conclude that if

a2c1 − c21 − a1 > 0 then periodic orbits with the symbol
sequence (+− (−+)m) exist for arbitrarily small time steps.
Admissibility regions for these symbol sequences for m =
2, 3, 4, 5 are shown in Fig. 1(d,g,l,o).

C. Admissibility of short periodic symbol sequences

All period–n solution can be found by considering symbol
sequences of length n and verifying the admissibility condi-
tions (5). The number of symbol sequences to be considered
can be reduced by using Lemmas 5 and 6. This analysis is
carried out below for small n.

1) Period–2 orbits: The only period–2 symbol sequence
which has to be considered is (+−). In this case ∆0 = 0,
∆1 = e − af/(1 + d). It follows from Lemma 4 that this
sequence is admissible if and only if e > af/(1+d) (compare
Fig. 1(a)).

2) Period–4 orbits: It is sufficient to check the sequence
(+ +−−). This is a sequence of type (+m−m) with m = 2.
For these type of sequences from symmetry of the symbolic
sequence it follows that ∆m+k(r) = ∆m(r) − ∆k(r) for
0 ≤ k < m. Therefore, the admissibility condition (5) can
be rewritten as max0≤k<m ∆k(r) < minm≤k<2m ∆k(r) =
∆m(r)+min0≤k<m(−∆k(r)) = ∆m(r)−max0≤k<m ∆k(r),
and finally 2 max0≤k<m ∆k(r) < ∆m(r). For m = 2 we have
∆0 = 0, ∆1 = e−af(1+d)/(1+d2), ∆2 = 2e−2afd/(1+
d2). The sequence is admissible if 2 max(∆0(r),∆1(r)) <
∆2(r), which is equivalent to af > 0, and afd < e(1 + d2)
(compare Fig. 1(b)).

3) Period–6 orbits: It is sufficient to check the sequences
(+3−3) and (+ − (−+)2). The first sequence is of type
(+m−m) for m = 3 with ∆0 = 0, ∆1 = e − af(1 + d +
d2)/(1 + d3), ∆2 = 2e− 2afd(d+ 1)/(1 + d3), ∆3 = 3e−
af(3d2 +d−1)/(1+d3). From the argument presented when
considering the sequence (+2−2) we know that this sequence
is admissible if and only if 2 max(∆0(r),∆1(r),∆2(r)) <
∆3(r), which is equivalent to 3e > af(3d2 +d−1)/(1 +d3),
e > af(d2−d−3)/(1+d3), and e < af(d2+3d+1)/(1+d3).
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Note that for |d| < 1 and small af/e this symbol sequence is
not admissible (see Fig. 1(c)).

The sequence (+− (−+)2) is of type (+− (−+)m) with
m = 2. According to Lemma 8 it is admissible for d ∈ (0, 1)
if 0 < af < e(1+d+d2)(1+d3)/(1+2d+d2 +d4), and for
d ∈ (−1, 0) if 0 < af < e(1 + d+ d2)(1 + d3)/(1− d2 + d4)
(compare Fig. 1(d)).

4) Longer orbits: Analysis of the existence of periodic
orbits for larger periods becomes more difficult. When d
is fixed, using Lemma 4 one can numerically compute the
admissible range for af/e. These calculation were performed
for all symbol sequences of period n ≤ 12 for d ∈ [−2, 2],
|d| 6= 1, d = k/50 with integer k. Rational arithmetic was used
to avoid rounding errors. Admissibility regions are shown in
Fig. 1. Sequences, which are not admissible for |d| < 1 are
skipped. For a < 0 the only admissible sequence is r = (−+).
This is in full agreement with the Theorem 1. For a > 0
other sequences are also admissible. Observe that only a small
fraction of symbol sequences is admissible for |d|< 1. As a
rule, patterns containing both long and short subsequences of
equal symbols are forbidden for |d| < 1. As predicted by
Lemma 7 patterns with more than three equal consecutive
symbols are not admissible for |d|<1 and small |af/e|.

V. SIMULATION RESULTS

As an example, let us consider the SMC system with
parameters a1 = −2, a2 = 2, c1 = 1, α = 1, c1a2−c21−a1 =
3 > 0. For h = 0.1 we have γ1 ≈ 0.00469, γ2 ≈ 0.09094,
v ≈ 0.2701, a ≈ 0.01407, e ≈ 0.09563, f ≈ 0.09094,
d ≈ 0.9184.

(a) −+ (b) −2+2 (c) −+−2+2

(d) (−+)2 −2 +2 (e) (−+)3 −2 +2 (f) −+ (−2+2)2

(g) (−+)4 −2 +2 (h) (−+)5 −2 +2 (i) −+ (−+−2+2)2

Fig. 3. Examples of periodic orbits, x1 ∈ [−0.05, 0.05], x2 ∈
[−0.15, 0.15], a1 = −2, a2 = 2, c1 = 1, h = 0.1, α = 1

Periodic orbits with the period n ≤ 20 have been found
using Lemma 4. In Table I all 17 admissible patterns of
symbols with period n ≤ 20 are shown. Patterns corresponding
to the same cycle are not reported. Examples of periodic orbits
corresponding to the first nine admissible patterns are shown
in Fig. 3. Let us note that the condition 0 < af < eg(d) is sat-
isfied. It follows that symbol sequences of type (+− (−+)m)
with arbitrary m are admissible. There are 8 such patterns in
Table I (rows c, d, e, g, h, k, m, p).

It is interesting to note that all admissible sequences found
can be obtained by concatenating two short patterns: P =
(−+) and Q = (− − ++) (compare Table I). For example
sequences of type (+−(−+)m) after shifting can be expressed
as Pm−1Q. In Table I one can also see examples of other
infinite families of admissible sequences, for example of type
PQk (rows c, f, j, o), or P (PQ)k (rows d, i, r).

TABLE I
ADMISSIBLE SYMBOL SEQUENCES WITH PERIOD n ≤ 20 FOR a1 = −2,

a2 = 2, c1 = 1, h = 0.1, α = 1, P = (−+), Q = (−−++)

n r r y1 y2

a 2 −+ P 0.09496
0000 0.04740

b 4 −2+2 Q 0.09568
430 0.09463

c 6 −+−2+2 PQ 0.09592
08 0.11022

d 8 (−+)2 −2 +2 P 2Q 0.09604
546 0.11791

e 10 (−+)3 −2 +2 P 3Q 0.09611
569 0.12243

f 10 −+ (−2+2)2 PQ2 0.09580
38 0.10237

g 12 (−+)4 −2 +2 P 4Q 0.09615
584 0.12538

h 14 (−+)5 −2 +2 P 5Q 0.09619
594 0.12742

i 14 −+ (−+−2+2)2 P (PQ)2 0.09597
73 0.11350

j 14 −+ (−2+2)3 PQ3 0.09575
51 0.09917

k 16 (−+)6 −2 +2 P 6Q 0.09621
02 0.12890

l 16 (−+−2+2)2 −2 +2 (PQ)2Q 0.09583
64 0.10418

m 18 (−+)7 −2 +2 P 7Q 0.09623
07 0.13002

n 18 −+ ((−+)2 −2 +2)2 P (P 2Q)2 0.09607
591 0.11959

o 18 −+ (−2+2)4 PQ4 0.09573
57 0.09750

p 20 (−+)8 −2 +2 P 8Q 0.09624
11 0.13087

r 20 −+ (−+−2+2)3 P (PQ)3 0.09595
82 0.11190

VI. CONCLUSION

Admissibility conditions for the existence of periodic orbits
with a given symbol sequence have been formulated and re-
gions of the existence of short periodic orbits have been found.
It was shown that even for arbitrarily small discretization steps
complex switching patterns including arbitrarily long periodic
solutions are possible.
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