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Abstract— The problem of existence of stable periodic orbits
(sinks) for the Hénon map in a neighborhood of classical pa-
rameter values is studied numerically. Several parameter values
which sustain a sink are found. It is shown rigorously that the
sinks exist. Regions of existence in the parameter space of the
sinks are located using the continuation method.

I. I

The Hénon map [1] is a two-parameter, invertible map

h(x, y) = (1 + y − ax2, bx), (1)

displaying a wide array of dynamical behaviors as its param-
eters are varied. For the classical parameter values, a = 1.4,
b = 0.3 the so-called Hénon attractor is observed (see Fig. 1).
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Fig. 1. a = 1.4, b = 0.3, trajectory of the Hénon map composed of 10000
points

The Hénon map is a prominent example of a chaotic map
and has many potential applications in engineering [2], [3].
In these applications it is quietly assumed that the map is
chaotic (trajectories belonging to the attractor are aperiodic
and sensitive to initial conditions). However, the question
whether the Hénon attractor is indeed chaotic remains open.
If the Hénon map is chaotic, we will perhaps be never able to
prove this fact. It is known [4] that there is a set of parameters
(near b = 0) with positive Lebesgue measure for which the

Hénon map has a strange (chaotic) attractor. However, this set
is believed to be densely filled with regions, where the attractor
is periodic. It means that given a specific point (a, b) in the
parameter space, it is not possible to prove that the dynamics
of the map generates a strange attractor.

The second possibility is that the Hénon attractor is periodic,
i.e. that what we observe in computer simulations is actually
a transient behaviour to the periodic steady state or that we
observe a periodic orbit with a very long period. If this
second possibility is true then theoretically, we are able to
prove this fact. Proving the existence of a sink involves
finite computations, and all necessary conditions are robust
(there exists an open set in the parameter space in which all
conditions remain true).

In the setting we are considering, it is known [5] that
when a saddle point generates a homoclinic intersection, a
cascade of (periodic) sinks will occur. Furthermore, there will
be nearby parameter values for which the map has infinitely
many coexisting sinks. Nevertheless, coexisting sinks for the
Hénon map appear to be very elusive; due to the dissipative
nature of the map, the regions in the parameter space for which
sinks appear simultaneously are extremely small.

In this work, we report results of the numerical search for
parameter values — close to the classical ones — for which
there exists a sink. We locate a number of such parameter
values in a neighborhood of (a, b) = (1.4, 0.3). Our study
shows that close to the classical case, the regions of existence
of sinks are very narrow and finding them is not a trivial
numerical task. We present examples confirming that in many
cases where there appears to be a strange attractor, the true
underlying dynamics is in fact governed by a periodic sink.
Using the continuation method, the regions of existence of
found sinks are extended, which makes it possible to move
closer to the classical case.

II. L     

The most natural method to find a sink is to follow a
trajectory and monitor whether it converges to a periodic orbit.
First, a number of iterates are computed in the hope that
a trajectory reaches a steady-state. The number of iterations
which are discarded is usually chosen by trial-and-error. It
depends on Lyapunov exponents along the orbit, the size and



shape of its basin of attraction. Next, we take the current iterate
as the new initial point and check if the trajectory periodically
returns very close to this point.

Once an approximate position of a sink is known, to be
sure that the orbit exists we have to prove its existence. It
is possible that an observed periodic behaviour is an artifact
caused by rounding errors. The existence can be proved using
methods from interval analysis [6], [7]. These methods allow
us to obtain rigorous results using computers. Interval methods
provide simple tests for the existence and uniqueness of zeros
of a map within a given interval vector. To investigate zeros of
F in the interval vector v one evaluates an interval operator,
for example the interval Newton operator [7], over v:

N(v) = v̂ − F′(v)−1F(v̂), (2)

where v̂ ∈ v, and F′(v) is an interval matrix containing the
Jacobian matrices F′(v) for all v ∈ v. The main theorem on
the interval Newton operator states that if N(v) ⊂ v, then F
has exactly one zero in v.

In order to study the existence of period–p orbits of h, we
construct the map F defined by [F(v)]k = z(k+1) mod p − h(zk)
for 0 ≤ k < p, where v = (z0, z1, . . . , zp−1). It is clear that
v is a zero of F if and only if z0 is a fixed point of hp. To
prove the existence of a periodic orbit in a neighborhood of the
computer generated trajectory v = (z0, z1, . . . , zp−1), we choose
the radius r, construct the interval vector v = (z0, z1, . . . , zp−1),
where zk = [zk − r, zk + r] and verify whether N(v) ⊂ v. If the
existence condition does not hold we may choose different r
and try again (see [8] for details). This method combined with
the bisection technique has been used to find all short periodic
orbits for discrete systems including the Hénon map [9] and
continuous systems [8], [10].

Stability of the orbit v = (z0, z1, . . . , zp−1) depends on
the eigenvalues λi of the Jacobian matrix J = (hp)′(z0) =

h′(zp−1) · · · h′(z1) · h′(z0). If all eigenvalues lie within the unit
circle, i.e. |λi| < 1 then the orbit is asymptotically stable. If at
least one eigenvalue lies outside the unit circle (|λi| > 1) then
the orbit is unstable.

When a point in the parameter space with a sink is found one
may use the continuation method to find a connected region
in the parameter space for which this sink exists. The border
of the region is defined by two conditions. The first condition
is that the periodic orbit exists, and the second one is that
one of the eigenvalues of the Jacobian matrix has the absolute
value 1. Note that it is not necessary to run long computations
to find the steady state for new test points in the parameter
space. The position of the sink for a new test point is found
using the standard (real valued) Newton method started at the
position of the orbit for the current point in the parameter
space. This method works because positions of periodic orbits
change continuously with the parameters.

In order to find the border of the existence region, first, we
continue along a straight line, starting from the point for which
the existence of the sink has been verified. This gives us two
points belonging to the border of the existence region. For each
of the two points we use the simplex continuation method [11].

In this method, a sequence of triangles is constructed such
that each triangle has non-empty intersection with the border.
Corners of the triangles are located on a regular grid. As the
first triangle we choose the one containing the border point
found in the initial step. Assuming that two edges of this
triangle has nonempty intersection with the existence region
we continue in two directions. In each direction, the initial
triangle is replaced by the triangle defined by two corners of
the chosen edge, and the third corner is a grid point located
symmetrically to the third point of the initial triangle. This
process is repeated and a sequence of triangles containing the
border is found.

Even if there is a single attractor for the system, it may
take quite a long time for a trajectory to converge to it. In this
context, a very important notion is the so-called immediate
basin size of the attractor. It is defined as the largest number
rε such that all trajectories starting closer than rε from the
attractor do not escape further than ε from the attractor, and
converge to it. If the immediate basin size of an attractor is
very small then it will usually take very long time to converge
to it. What we observe in such a case is a very long transient,
which sometimes is misidentified as a chaotic trajectory.

III. R
In order to locate sinks for parameter values close to the

classical ones (a, b) = (ā, b̄) = (1.4, 0.3), we carried out the
following search in the parameter space. The fixed value of
the parameter b was used (b = 0.3). npar = 106 values of the
parameter a from the interval [1.3999, 1.4001] were chosen.
For each parameter value, ninit = 5000 random initial points
were selected, and for each initial point the search for a sink
was performed. In the search procedure nskip = 105 iterations
were computed and skipped to reach the steady state and the
following niter = 104 iterations were used to verify whether
the trajectory in the steady state is periodic.

We found nsink = 57 (out of npar = 106) parameter values
with a sink. When for two adjacent parameter values a sink
with the same period is detected, we consider that these two
parameter values belong to the same periodic window. In these
computations, nwin = 11 periodic windows have been found.

Note that during the whole search procedure for each of the
106 values of a considered, more than 109 iterations of the
Hénon map were computed. When the number of iterations
was too low, the number of parameter values with a sink
detected was significantly smaller.

TABLE I
C       a   1.4 b = 0.3

a npar ninit nskip niter nsink nwin
[1.3999, 1.4001] 106 5000 105 104 57 11

[1.39999, 1.40001] 106 1000 5·105 104 8 3
[1.399999, 1.400001] 106 1000 105 104 0 0
[1.399999 1.400001] 2·106 2000 105 104 1 1

[1.3999999, 1.4000001] 106 2000 105 104 0 0

Similar computations were performed for various intervals
centered at the point a = 1.4. Descriptions of the tests carried



out and the number nsink of parameter values for which a
sink was found and the number nwin of periodic windows are
collected in Table I.

Let us note that for the interval [1.3999, 1.4001] of length
2 ·10−4 we found 57 parameter values with a sink. There are 8
such parameter values for the interval of length 2 · 10−5, only
1 for the interval of length 2 · 10−6. In fact, this sink was only
found when the number of test points was increased to 2 ·106;
for 106 test points no sinks were found (compare Table I). For
the interval of length 2 · 10−7 no sinks were found.

Berofe caryying out the computation, we tested whether
one should compute one very long trajectory or many shorter
trajectories starting from random initial conditions. The tests
showed that what matters is the total number of iterations (i.e.
ninit ·nskip). The search procedure with many randomly chosen
initial conditions was used because it was easier to parallelize.

Results on periodic windows found are shown in Table II.
We report the value of the parameter a for which the existence
of a sink was proved, the period p of the sink, the width d
of the periodic window, the immediate basin size rε, and the
largest Lyapunov exponent λ1.

TABLE II
P   a   1.4 b = 0.3

a p d rε λ1
1.399922051 25 5.522 · 10−12 2.473 · 10−12 −0.00132
1.39997174948 30 1.354 · 10−11 3.561 · 10−12 −0.01887
1.3999769102 18 3.207 · 10−09 1.014 · 10−09 −0.05306
1.39998083519 24 1.703 · 10−11 7.384 · 10−12 −0.02819
1.399984477 20 8.875 · 10−10 4.076 · 10−10 −0.05099
1.39999492185 22 3.686 · 10−11 1.531 · 10−11 −0.09600
1.3999964733062 39 2.784 · 10−13 1.115 · 10−13 −0.03547
1.399999486944 33 1.110 · 10−12 6.901 · 10−13 −0.01843
1.40000929916 25 1.118 · 10−11 5.128 · 10−12 −0.08379
1.4000227433 21 2.262 · 10−10 7.901 · 10−11 −0.05612
1.40002931695 27 5.782 · 10−11 2.646 · 10−11 −0.01140
1.40006377472 27 8.692 · 10−11 3.810 · 10−11 −0.05636
1.40006667358 24 6.278 · 10−11 2.646 · 10−11 −0.01112
1.4000843045 27 9.400 · 10−11 4.572 · 10−11 −0.06870
1.40009110518 22 3.493 · 10−11 1.531 · 10−11 −0.02157
1.4000967515 26 2.463 · 10−10 1.365 · 10−10 −0.13233

First, let us note that widths of periodic windows are in
some cases extremely small. In general, the windows for
longer orbits are smaller. The smallest width d = 2.784 · 10−13

corresponds to the period-39 sink, the longest one detected.
This shows that it is necessary to make a very fine sampling
of the parameter space to find periodic windows corresponding
to longer orbits.

The periodic window of the period-33 sink containing the
point a = 1.399999486944 is the one closest to classical
parameter values. The distance is less than 5.14 · 10−7.

Fig. 2(a) shows a trajectory of the Hénon map with a =

1.399999486944, b = 0.3 obtained by starting at the initial
condition (x, y) = (0.1, 0.1), skipping 5 · 109 iterations and
plotting the next 10000 iterations. The plot looks like the
Hénon attractor observed for a = 1.4, b = 0.3. In spite of
the fact that a huge number of iterations have been skipped
the trajectory has not reached the steady state yet. The steady

state — a period-33 sink — obtained after 6 · 109 iterations
is shown in Fig. 2(b). This example shows that it might be
necessary to wait very long until the steady state is observed.
This long transient is related to the very small immediate basin
size of the sink. A chaotic transient has very low probability of
falling into the immediate basin, although in case of a single
attractor, eventually it will happen with probability one.

It follows that what we observe in many examples reported
in the literature, and what is claimed to be a chaotic trajectory,
might in fact be a transient to a periodic steady state.
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Fig. 2. a = 1.399999486944, b = 0.3, trajectory of the Hénon map composed
of 10000 points (a) 5 · 109 iterations skipped, (b) 6 · 109 iterations skipped

Clearly, the convergence time depends on the initial point.
For example, when the initial point is (x, y) = (0, 0), the
convergence time is 1.63 · 108. To compute the average
convergence time we performed the following test. 100000
random initial conditions were selected, and in each case the
convergence time was recorded. The shortest convergence time
was 26971. In two cases the convergence time exceeded 1011.
From this data set one can compute the number of iterations
nconv(p) which are required to converge to the sink with
probability p. For example nconv(0.5) ≈ 1.66 · 109, nconv(0.9) ≈



5.51·109. The number Nk of initial points with the convergence
time in the interval [2k−1, 2k) is shown in Fig. 3. The maximum
is for k = 32, which means that most trajectories converge after
[231, 232) iterations.
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Fig. 3. The number Nk of random initial points with the convergence time
in the interval [2k−1, 2k), (a) a = 1.399999486944 with a period-33 sink, the
symbol “�”, (b) a = 1.3999769102 with a period-18 sink, the symbol “+×”

Similar computations were performed for the parameter
value a = 1.3999769102, for which a period-18 sink exists.
In this case, the shortest and the longest convergence times
are 82 and 61392634 iterations, respectively. The convergence
probabilities nconv(0.5) ≈ 3.35 · 106, nconv(0.9) ≈ 1.11 · 107

are almost 500 times smaller than in the previous case. This
is a consequence of a much larger immediate basin size,
1.014 · 10−9 > 6.901 · 10−13 (compare Table II). Results on
convergence times are shown in Fig. 3. The plot is similar
in shape to the plot for a = 1.399999486944, however, it is
shifted towards lower values of k. The maximum is for k = 23.

Using the continuation procedure presented in Section II,
we found the existence region of the period-18 sink. The
results are shown in Fig 4. The region is very thin. Its average
width is approximately 3 · 10−9. It was proved that the point
(a, b) = (1.3999945292, 0.2999901796) belongs to this region.
The Euclidean distance between this point and the point of
classical parameter values (ā, b̄) = (1.4, 0.3) is d ≈ 1.12 · 10−5

which is considerably smaller than the distance d ≈ 2.31 ·10−5

from the point, where the continuation procedure was initiated.
A local existence region was also found for the period-

33 sink (compare Fig 4). It was verified that the point
(a, b) = (1.399999566171, 0.299999814578) belongs to this
region. The Euclidean distance between this point and the
point (ā, b̄) is less than 4.72 · 10−7.

IV. C
Several regions in the parameter space, for which the Hénon

map has a sink, were located. It was shown that there exist
low-period sinks extremely close to the classical case. The
number of iterations which should be computed to ensure that
with a certain probability a trajectory converges to a sink has
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Fig. 4. Local existence regions of period–18 and period–33 sinks found using
the continuation method; period–18 sink: “+” — the continuation method
initial point, “�” — the point with the distance 1.12 ·10−5 from (ā, b̄); period-
33 sink: “+×” — the point with the distance 4.72 · 10−7 from (ā, b̄)

been estimated. We have shown that the convergence time
could be very large. Based on these results we conclude that
what in many research papers is claimed to be a chaotic
trajectory of the Hénon map might be in fact a transient
to a periodic steady state. In future, we plan to focus on
multiprecision computations with the goal of finding longer
sinks for parameter values even closer to the standard case.
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