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The dynamics of the Colpitts oscillator with an exponential nonlinearity is investigated using rigorous interval arith-
metic based tools. The existence of various types of periodic attractors is proved using the interval Newton method.
The main results involve the chaotic case for which a trapping region for the associated return map is constructed and
a rigorous lower bound for the value of the topological entropy is computed, thus proving that the system is chaotic in
the topological sense. A systematic search for unstable periodic orbits embedded in the chaotic attractor is carried out
and the results are used to obtain an accurate approximation of the topological entropy of the system.
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Numerical studies suggest that for certain parameter val-
ues the dynamics of the Colpitts oscillator is chaotic. It is
however important to remember that this is not a mathe-
matically proven fact. Observed chaotic trajectories may
be an effect of rounding errors. It is also possible that ob-
served trajectories are transients and the true attractor is
in fact periodic.

In this paper, we study the dynamics of the Colpitts os-
cillator with an exponential nonlinearity. For certain pa-
rameter values a periodic behavior is observed in com-
puter simulation. In these cases we prove that the attrac-
tor is indeed periodic. The main part of the paper is in-
volved with the chaotic case. We prove that for certain
parameter values the Colpitts oscillator has positive topo-
logical entropy. It follows that the systems supports an
infinite number of periodic orbits and that chaotic trajec-
tories exist. According to our knowledge, this is the first
rigorous proof that the Colpitts oscillator is chaotic in the
topological sense. A trapping region containing numeri-
cally observed trajectories is constructed from which the
existence of a (possibly chaotic) attractor follows. The ma-
jority of short unstable periodic orbits embedded in the
numerically observed attractor are found. The existence
of these periodic orbits and their stability properties are
confirmed using interval arithmetic based tools. Periods
and flow times of unstable periodic orbits found are used
to estimate the true value of the topological entropy of the
associated return map and of the flow.

I. INTRODUCTION

In recent times, nonlinear systems which can exhibit
chaotic behavior have attracted a great interest among many
researchers. One of the most important features of chaotic
systems is the sensitive dependence on initial conditions. In
such systems even a minor change of state variables results in
significant changes in the output signal. As a consequence,
predictions of system’s behavior is limited to short intervals

of time only. There are a lot of dynamical systems (physical,
biological etc.) that are known to be chaotic. Well known
examples of electronic circuits generating chaotic trajectories
include the Chua’s circuit1 and the Colpitts oscillator2.

In this work, a rigorous interval arithmetic based study of
the Colpitts oscillator is carried out. The Colpitts oscillator
is a single-transistor device widely used for generating sinu-
soidal waves. Study of dynamical behaviors of the Colpitts
oscillator is important for the following reasons

1. the Colpitts oscillator is an electronic circuit used in
various applications to generate sinusoidal oscillations,

2. it can operate in a wide range of frequencies (in partic-
ular at radio frequencies) depending on the technology
used,

3. it is a classical example of a simple electronic circuits
capable of generating chaotic trajectories, it is a third
order system containing a single nonlinear element,

4. it has been extensively studied and various dynamical
behaviors of the Colpitts oscillator have been reported
in the literature2–7,

5. the existence of a chaotic attractor for the Colpitts os-
cillator is a demanding, yet unsolved research problem.

Chaotic behavior of the Colpitts oscillator was first de-
scribed in Ref. 2. The problem of stabilization of unstable
periodic orbits in the chaotic Colpitts oscillator was studied
in Ref. 8. Bifurcation analysis of the Colpitts oscillator was
carried out in Ref. 3. Non-smooth bifurcations in a piecewise-
linear model of the Colpitts oscillator were studied in Ref. 4.
Chaotic behavior of the Colpitts oscillator in the ultrahigh fre-
quency range was presented in Ref. 9. The problem of sta-
bility of oscillations in this system was discussed in Ref. 5.
The dynamics and synchronization of improved Colpitts os-
cillators were analyzed in Ref. 10. Synchronization of chaotic
oscillation in the Colpitts oscillator by a nonlinear control
method was studied in Ref. 6. A single op-amp Colpitts-like
chaotic circuit was investigated in Ref. 11. The dynamics of
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a Colpitts oscillator with symmetrical power supply was stud-
ied in Ref. 7. Various dynamical behaviors of the Colpitts
oscillator were discussed in Refs. 12 and 13. A bounded set
enclosing chaotic trajectories existing in the Colpitts oscillator
was constructed in Ref. 14.

However, no results concerning rigorous analysis of a com-
plex dynamics of this system have been reported in the litera-
ture. In particular, no one has proved before that the observed
dynamics is really chaotic.

There are two types of nonlinearities used to model the dy-
namics of the transistor in the Colpitts oscillator: the piece-
wise linear and the exponential nonlinearities. In this work
we consider the latter case. The goal of this work is to carry
out a thorough study of the dynamics of the Colpitts oscilla-
tor and to prove that the Colpitts oscillator is indeed chaotic.
Rigorous results regarding the Colpitts oscillator are obtained
using tools based on the interval arithmetic15,16, where the
calculations are carried out on intervals instead of standard
calculations involving real numbers. The calculations are im-
plemented in such a way that the obtained result encloses the
true solution.

Interval calculations reported in this work are carried out
using the CAPD library17. Computation times are reported for
a single core 3.1 GHz computer. The intervals, interval vector,
and interval matrices are denoted with bold letters, while stan-
dard (real) quantities are denoted with the usual math italic.
The closed interval with the endpoints x ≤ x is denoted by
x = [x,x]. For the sake of brevity, we use a short notation
to define intervals. For example 53.764

3 denotes the inter-
val [53.763,53.764]. The diameter of the interval x = [x,x]
is defined as Diam(x) = x− x. The diameter of the inter-
val vector x = (x1,x2, . . . ,xn) is defined as the maximum of
Diam(xk) for k = 1,2, . . . ,n. The middle point of the interval
x = [x,x] is denoted by Mid(x) = 0.5 · (x+ x). The middle
point of the interval vector x = (x1,x2, . . . ,xn) is the vector
Mid(x) = (Mid(x1),Mid(x2), . . . ,Mid(xn)).

The structure of the remaining part of this paper is as fol-
lows. Basic properties of the Colpitts oscillator are recalled
and dynamical behaviors of the system for different values of
parameters are reported in Section II. In Section III, the exis-
tence of periodic attractors for several values of the bifurcation
parameters is proved. Rigorous bounds for the flows times
and Lyapunov exponents are calculated. The chaotic case is
considered in Section IV. In Section IV A a trapping region
containing chaotic trajectories observed in simulations is con-
structed. The method of covering relations is used to prove
that the Colpitts oscillator is chaotic in the topological sense
in Section IV B. Sets supporting nontrivial covering relations
are constructed and a positive lower bound on the topological
entropy of the return map associated with the considered dy-
namical system is computed. A rigorous positive lower bound
on the topological entropy of the flow associated with the Col-
pitts oscillator is found. In Section IV C unstable periodic or-
bits embedded in a chaotic attractor are found. The method
of close returns is used to locate pseudo periodic orbits, the
Newton method is applied to find approximate positions of
true periodic orbits and the interval Newton operator is used
to prove their existence. The number of unstable periodic or-

bits and their flow times are used to obtain a non-rigorous ap-
proximation of the topological entropy of the return map and
of the flow.

II. COLPITTS OSCILLATOR WITH THE EXPONENTIAL
NONLINEARITY

The schematic diagram of the Colpitts oscillator2,3 is shown
in Fig. 1(a). The resonant part of the circuit consists of the ca-
pacitance divider C1, C2 and the coil modeled as a series con-
nection of the inductance L and the resistance R. The bipolar
junction transistor (BJT) is biased in the active region by the
voltage VCC and the current source I0. The BJT transistor is
modeled using the nonlinear resistor Re and the current source
αF IE (compare Fig. 1(b)). We assume that the current gain αF
is equal to 1, which is equivalent to neglecting the base cur-
rent. The characteristics of the nonlinear resistor Re is given
by IE = Is(exp(VBE/VT )−1), where Is is the inverse saturation
current and VT is the thermal voltage.

(a)
R

L

I
L

V
CC

I
0

C
1

C
2

+

+

V
C1

V
C2

C

E

B

(b)

I
E

B

E C

I
B

I
C

α
F
I

E

+
V

BE

FIG. 1. (a) the Colpitts oscillator, (b) the model of the BJT transistor.

Following Ref. 3, let us introduce dimensionless state vari-
ables x1 = (VC1−VC10)/VT , x2 = (VC2−VC20)/VT , x3 = (IL−
IL0)/I0, where VC10, VC20, IL0 denote the operating point of the
oscillator. The dynamics of the Colpitts oscillator with the ex-
ponential nonlinearity is governed by the following system of
differential equations3:

ẋ1 = g(Q(1− k))−1(x3−n(x2)),

ẋ2 = g(Qk)−1x3, (1)

ẋ3 = Qk(k−1)g−1(x1 + x2)−Q−1x3.

where n(x2) = exp(−x2)−1, k =C2/(C1 +C2), g is the open
loop gain of the oscillator, Q = ω0L/R is the quality factor,
and ω0 = (LC1C2/(C1 +C2))

−1/2 is the resonant frequency
of the unloaded L-C circuit. For more details regarding this
model see Ref. 3.

The dynamics of the Colpitts oscillator is analyzed for the
following values of dimensionless parameters: Q ∈ [0.8,1.6],
k = 1.5, and g = 4.47. For these parameter values the cir-
cuit has a single equilibrium point at the origin (x1,x2,x3) =
(0,0,0). For Q = 1.3, the eigenvalues of the Jacobian matrix
associated with the equation (1) at the equilibrium (0,0,0) are
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λ1 ≈ −1.5522, λ2,3 ≈ 0.3915± 1.4360i. It follows that the
equilibrium point is unstable.

Q=0.88 Q=0.91

Q=0.97 Q=0.98

Q=1.30 Q=1.60

FIG. 2. Projections of steady state trajectories of the system onto
the plane (x1,x2) for different values of the bifurcation parameter Q;
variable ranges: x1 ∈ [−100,100], x2 ∈ [−10,50]; the red star in each
plot denotes the position of the equilibrium point.

Fig. 2 shows trajectories of the system (1) for different val-
ues of the quality factor Q. The equilibrium (0,0,0) is plotted
as a red star. For Q = 0.88 one can see a periodic orbit with
a single turn around the equilibrium. For Q = 0.91 the peri-
odic trajectory has two turns around the equilibrium and the
period is approximately two times larger than for Q = 0.88.
For Q = 0.97 (Q = 0.98) one can see periodic trajectories
with four (eight) turns around the equilibrium. This is a well
known cascade of period-doubling bifurcation. Further in-
crease of the bifurcation parameter leads to a chaotic behavior
(Q = 1.3). A periodic attractor is observed for Q = 1.6. This
parameter value belongs to a periodic window existing within
the chaotic regime.

Lyapunov exponents are a quantitative tool frequently used
in the analysis of dynamical systems. They measure the av-
erage rate of the divergence or convergence of orbits starting
from two closely located initial conditions. For a stable peri-
odic orbit the largest Lyapunov exponent is zero and the other
ones are negative. A bounded trajectory for which the largest
Lyapunov exponent is positive is chaotic and has a property of
sensitive dependence on initial conditions18,19.

Table. I presents the Lyapunov spectrum for the selected
values of the parameter Q (compare Fig. 2). Lyapunov expo-
nents are computed using the approach based on the Gram-
Schmidt orthogonalization method18. For Q = 1.3 the largest
Lyapunov exponent is positive. This indicates that for this pa-
rameter value one can expect a chaotic evolution of the system
in time. For all other cases reported in Fig. 2 the largest Lya-
punov exponent is zero, which suggests that the attractor is
periodic. However, one should remember that values of Lya-
punov exponents cannot be regarded as proofs that the attrac-
tor is chaotic (if the largest Lyapunov exponent is positive) or
periodic (if the largest Lyapunov exponent is zero). The first
reason is that a trajectory for which the calculations are carried
out can be of a transient type, while the Lyapunov exponents

should be calculated for a steady state trajectory belonging to
the attractor. The second reason is that Lyapunov exponents
are usually discontinuous functions of bifurcation parameters
in regions where the largest Lyapunov exponent is positive.
This is a consequence of the fact that frequently periodic win-
dows densely fill a chaotic parameter region.

TABLE I. Lyapunov spectra for selected values of Q.
Q λ1 λ2 λ3

0.88 0 −0.01614 −1.1268
0.91 0 −0.05491 −1.0527
0.97 0 −0.06267 −0.9752
0.98 0 −0.00419 −1.0237
1.30 0.06918 0 −0.8438
1.60 0 −0.11301 −0.5172

In the remaining part of the paper a rigorous study of dy-
namical behaviors of the Colpitts oscillator for values of the
bifurcation parameter reported in the Table I is carried out.
The dynamics is analyzed using the concept of a return map,
which converts continuous time systems to discrete ones. We
use the return map P : Σ 7→ Σ defined as P(x) = ϕ(τ(x),x),
where ϕ(t,x) denotes the trajectory of (1) starting at the initial
point x and τ(x) is the return time after which the trajectory
ϕ(t,x) returns to Σ = {(x1,x2,x3) ∈ R3) : x2 = 2, ẋ1 < 0}.

III. PERIODIC ATTRACTORS

In this section, we analyze the system behavior for cases
Q ∈ {0.88,0.91,0.97,0.98,1.60} in which periodic attractors
are observed is simulations.

The existence of periodic attractors is proved using the in-
terval Newton operator. For a smooth function F : Rm→ Rm,
the interval vector x ⊂ Rm and the point x̄ ∈ x the interval
Newton operator is defined as

N(x̄,x) = x̄−F ′(x)−1F(x̄), (2)

where F ′(x) is the interval matrix containing Jacobian matri-
ces F ′(x) for all x ∈ x. When evaluating the interval Newton
operator one usually selects x̄ = Mid(x).

The following theorem15,16 can be used to prove the exis-
tence and uniqueness of zeros of F :

Theorem 1. Let x be an interval vector, x̄ ∈ x and F : Rm→
Rm be a smooth function. Assume that F ′(x) is invertible as
an interval matrix. If

N(x̄,x) = x̄−F ′(x)−1F(x̄)⊂ x (3)

then the map F has a unique zero in the interval vector x.

Let us assume that w̄ = (w̄1, w̄2, . . . , w̄n) is the observed pe-
riodic orbit of P. To prove the existence of a true periodic
orbit in a neighborhood of w̄ we construct an interval vector
w centered at w̄ and evaluate the interval Newton operator (2)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
90

15
8



4

for the map F : R2n 3 w→ F(w) ∈ R2n defined as

F


w1
w2
...

wn

=


w2−P(w1)
w3−P(w2)

...
w1−P(wn)

 , (4)

where w = (w1,w2, ...,wn). The map F is constructed in such
a way that that each period-n orbit of P is a zero of F .

To prove that w contains a periodic orbit, we compute
N(w̄,w) = w̄−F ′(w)−1F(w̄) and verify whether N(w̄,w) ⊂
w. If this condition holds then from Theorem 1 it follows that
there exists a unique zero of F in w. This zero corresponds to
a period–n orbit of P and to a periodic solution of the contin-
uous dynamical system (1).

The stability of a periodic orbit w = (w1,w2, ...,wn) can be
studied by computing the matrix P′(wn)P′(wn−1) · · ·P′(w1). If
both eigenvalues of this matrix are smaller than 1 in the abso-
lute value then the orbit if stable. If at least one eigenvalue is
larger than 1 in the absolute value then the orbit is unstable.

A. A periodic attractor for Q = 0.88

In this case, in simulations of the return map P one
observes a stable fixed point (a period-one orbit) w1 ≈
(53.763874,2,3.87847). We construct an interval vec-
tor w = w1 = (53.764

3,2,3.879
8) 3 w1 with the diameter

Diam(w) = 0.001. The evaluation of the interval New-
ton operator N(w̄,w) with w̄ = Mid(w) yields N(w̄,w) =
(53.763883

65,2,3.8784759
35). The condition N(w̄,w) ⊂ w is ful-

filled. From Theorem 1 it follows that there exists a unique
fixed point of P in w.

Iterating the interval Newton operator produces an ac-
curate bound for the position of the fixed point w =
w1 = (53.763873674339

294,2,3.8784747169561
489) with the diam-

eter Diam(w1)≈ 4.44·10−11.
The interval matrix P′(w1) has eigenvalues belonging to the

intervals µ1 ∈ −0.8749992933
887 and µ2 ∈ −8.9113

07 ·10−5. The
eigenvalues µ1, µ2 lie within the unit circle. It follows that the
fixed point is stable. This completes the proof of existence of
a periodic attractor for Q = 0.88. The flow time (the length of
the orbit of the continuous time system) is t ∈ 8.32407102152

0.
Using the enclosures of eigenvalues µ1, µ2 and the enclo-

sure of the flow time t one can compute bounds for the non-
zero Lyapunov exponents of the periodic orbit using formu-
las λ2,3 = (log |µ1,2|)/t. This leads to the following bounds:
λ2 ∈ −0.0160416947

0, λ3 ∈ −1.120325
18. Note that the values

reported in Table I are not fully consistent with the rigorous
results presented here. Differences are caused by computa-
tional errors in the procedure for the calculation of Lyapunov
exponents.

B. A periodic attractor for Q = 0.91

For Q = 0.91, in simulation one observes a
period-2 orbit (w1,w2) ≈ ((44.046926,2,3.567802),

(58.375567,2,4.269907)).
We construct an interval vector w = (w1,w2) =

((44.04693
2,2,3.56781

0),(58.37557
6,2,4.26991

0)) 3 (w1,w2)

with the diameter Diam(w) = 10−5 and verify that the
condition N(w̄,w) ⊂ w is fulfilled. The existence
of a single period-2 orbit of P in w follows. Iterat-
ing the interval Newton operator gives a better bound
w = (w1,w2) = ((44.0469261853

47,2,3.56780209044
27),

(58.37556660861
31,2,4.269907173537

14)).
The interval matrix P′(w2)P′(w1) has eigenvalues µ1 ∈

0.4069
8 and µ2 ∈ [6·10−9,6·10−8]. The eigenvalues µ1, µ2

belong to the unit circle. It follows that the period-2 orbit
is stable and that a periodic attractor exists for Q = 0.91. The
flow time is t ∈ 16.5088731529

7 and the nonzero Lyapunov ex-
ponents are λ2 ∈ −0.05447568

6 and λ3 ∈ −1.15
00 (compare also

Table I).
In this case one can also prove the existence of a fixed

point of P. Indeed, for the interval vector w = w1 =
(49.9361

0,2,3.8633
2) with the diameter Diam(w1) = 10−4 the

condition (3) holds. It follows that w1 contains a fixed point.
The eigenvalues of P′(w1) are µ1 ∈ −1.1561967

6 and µ2 ∈
−1.1779

8·10−4. Since |µ1|> 1 it follows that the fixed point is
unstable. The flow time of the corresponding periodic orbit is
t ∈ 8.100357716178

2 and the nonzero Lyapunov exponents are
λ1 ∈ 0.017917223

1 and λ3 ∈ −1.11683
1.

C. Periodic attractors for Q = 0.97, Q = 0.98, and Q = 1.6

In a similar way the existence of periodic attractors is
proved for Q = 0.97, Q = 0.98, and Q = 1.6.

For Q = 0.97 the existence of a periodic attractor is
proved for the interval vector w = (w1,w2,w3,w4) =
((37.950790

89,2,3.533336
5),(55.832879

8,2,4.503053
2),

(33.455430
29,2,3.268042

1),(65.905229
8,2,5.008258

7)).
The eigenvalues of P′(w4)P′(w3)P′(w2)P′(w1) are
µ1 ∈ −0.12577999

81 and µ2 ∈ [−8.24,8.24] ·10−8.
For Q = 0.98 the existence of a periodic attractor is proved

for the interval vector w = (w1,w2,w3,w4,w5,w6,w7,w8) =
((37.5712921

0,2,3.558744
2),(54.4812781

0,2,4.4915934
2),

(31.953938
7,2,3.2206259

8),(67.3595341
0,2,5.1453779

8),

(38.3406843
1,2,3.60376084

2),(52.782573
1,2,4.4019301

0),

(32.390489
8,2,3.24698523

1),(66.360181
0,2,5.0961568

7)). The
eigenvalues of P′(w8)P′(w7) · · ·P′(w1) are µ1 ∈ −0.7584385

30
and µ2 ∈ [−2.72,2.72] ·10−6.

For Q = 1.6 the existence of a periodic attrac-
tor is proved for the interval vector w = (w1,w2) =
((7.224767

6,2,2.8414111
0),(61.621808

7,2,8.9055066
5). The

eigenvalues of P′(w2)P′(w1) are µ1 ∈ −0.1123739
01 and µ2 ∈

−4.71
33·10−5.

In all cases eigenvalues of the matrix
P′(wp)P′(wp−1) · · ·P′(w1), where p denotes the period
of the orbit lie within the unit circle. It follows that the
corresponding periodic orbits are stable and hence that these
periodic orbits are attractors. Parameters of periodic attractor
are collected in Table II.
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TABLE II. Rigorous bounds for the flow times t and Lyapunov ex-
ponents λ1 > λ2 > λ3 for periodic attractors. For Q = 0.91 we also
report parameters of the unstable periodic orbit.

Q t λ1 λ2 λ3
0.88 8.32407102152

0 0 −0.0160416947
0 −1.12033

1
0.91 16.5088731529

7 0 −0.05447568
6 −1.15

00
0.91 8.100357716178

2 0.017917223
1 0 −1.11683

1
0.97 33.3023145664

0 0 −0.0622547
5 <−0.4899

0.98 66.48466834
2 0 −0.0041589

7 <−0.1929
1.60 19.5039799108

6 0 −0.112078
5 −0.516

0

IV. CHAOTIC CASE

In this section, we analyze the case Q = 1.3 for which a
chaotic behavior is observed in simulations (compare Fig. 2).
We construct a trapping region for the return map thus prov-
ing the existence of an attractor. We prove that that the sys-
tem supports an infinite number of periodic orbits and that
the Colpitts oscillator is chaotic in the topological sense. We
also carry out a systematic search for unstable periodic orbits
embedded in the attractor and estimate the true value of the
topological entropy of the return map.

A. The existence of an attractor

The existence of an attractor is proved by constructing a
trapping region candidate T enclosing a computer-generated
trajectory of the return map P and showing using methods
based on the interval arithmetic that the set T is indeed a trap-
ping region.

A trapping region T for the map P is defined as a set in the
domain of the map which is mapped into itself, i.e., P(T )⊂ T .
The polygon T being a trapping region candidate for the re-
turn map P is shown in Fig. 3. The definition of the polygon
T is given in the Appendix. To prove that T is a trapping
region we use the generalized bisection method. First, we
cover the set T by boxes xk (two-dimensional interval vec-
tors) of a specified size, for each box xk find an enclosure yk
of the image P(xk) and verify the condition yk ⊂ T . If this
condition does not hold we split xk into smaller boxes, skip
boxes having empty intersection with T (if any) and repeat
the computations. Applying this procedure to the candidate
set T results in a covering composed of 96939 boxes xk with
the diameters above 0.0375. For each box it is verified that
P(xk)⊂ T , which completes the proof that T is a trapping re-
gion for P. The computer assisted proof takes approximately
530 seconds.

It is possible to shorten the computation time using the
property of uniqueness of solutions of (1). From this prop-
erty it follows that it is sufficient to prove that (i) the condition
P(x)⊂ T holds for each x from the border of T and (ii) the re-
turn map P is well defined on T . In both parts of the proof the
generalized bisection approach can be used. During the proof
the border of T is covered by 3599 boxes xk and the condition
P(xk) ⊂ T is verified. The interior of T is covered by 2980
boxes xk for which enclosures of images P(xk) are found. In
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FIG. 3. The border of the trapping region candidate T (red) enclosing
a trajectory of P (blue).

this way it is confirmed that the return map P is well defined
on T . Covering of the interior of T is shown in Fig. 4. The
whole proof takes approximately 39 seconds (19 seconds for
the border and 20 seconds for the interior). The computation
time is significantly shorter than in the first version.
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FIG. 4. Covering of the interior of T composed of 2980 boxes for the
proof that the return map P is well defined on T .

From the fact that T is a trapping region it follows that T
contains an attractor or multiple attractors.

B. Positive Topological Entropy

In this section, we show that the return map P associated
with the Colpitts oscillator is chaotic in the topological sense,
i.e., its topological entropy is positive. The method of cover-
ing relations is used to compute a rigorous lower bound of the
topological entropy of the return map.

Topological entropy19 of a discrete time dynamical system
characterizes mixing of points of a phase space. It is said that
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6

a discrete or continuous dynamical system is chaotic in the
topological sense if its topological entropy is positive19.

Covering relations20,21 are a topological tool which can be
used for proving the existence of periodic orbits and complex
symbolic dynamics. Let us briefly describe this idea in a two-
dimensional setting. Let f : R2 7→ R2 be a continuous map.
Let M1,M2, . . . ,Mk ⊂ R2 be pairwise disjoint sets. Each set
Mi is a topological rectangle with predefined horizontal and
vertical edges. We say that Mi f -covers M j if and only if the
images of vertical edges of Mi lie geometrically on the oppo-
site sides of the rectangle M j and the image P(Mi) is enclosed
in the interior of the topological stripe defined by the horizon-
tal edges of M j (the image P(Mi) has empty intersection with
the horizontal edges of M j). Example covering relations are
shown in Fig. 5.

M1
M2

f(M1)

f(M2)

FIG. 5. Example covering relations. M1 f -covers M2, M2 f -covers
M1 and M2. Vertical edges and their images are plotted in black.

The existence of covering relations involving the map f can
be used to obtain a lower bound for the topological entropy
h( f ) of f (compare Refs. 19 and 22). Assume that there ex-
ist certain covering relations regarding the map f and the sets
M1,M2, . . . ,Mk. The transition matrix A ∈ Rk×k is defined in
the following way: Ai j = 1 if Mi f -covers M j, and Ai j = 0
otherwise. Then, the topological entropy h( f ) is not less than
the logarithm of the dominant eigenvalue of the transition ma-
trix A.
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FIG. 6. Symbolic dynamics with five topological rectangles Mi. Ver-
tical edges are plotted in black.

In the first step of the computer assisted proof that P is
chaotic in the topological sense, the candidate topological
rectangles M1, M2,. . . , M5 are found (see Fig. 6). Definitions

of the sets Mi are given in the Appendix. Finding sets with
positive topological entropy is in this case a demanding prob-
lem and are constructed using the trial and error method. In
fact, we were not able to find less than five sets resulting in
a positive topological entropy. The sets Mi are enclosed in
the trapping region (compare Fig. 3). It follows that the re-
turn map P is well defined on

⋃5
i=1 Mi. Hence, it is sufficient

to check the conditions for covering relations for borders of
these sets only. It is verified that there are 7 covering relations
between the sets Mi. For example M1 P-covers both M4 and
M5. To prove that these covering relations hold the vertical
and horizontal edges of M1 and covered by 12 and 395 boxes,
respectively. Images of boxes covering vertical and horizontal
edges of M1 are plotted in Fig. 7 in cyan and blue, respectively.
One can see that images of horizontal edges of M1 do not in-
tersect horizontal edges of M4 and M5 and that images of ver-
tical edges of M1 are located geometrically on opposite sides
of M4 and M5. It follows that M1 P-covers both M4 and M5.
In a similar way the existence of other covering relations is
proved. During the whole proof vertical and horizontal edges
of Mi are covered by 37 and 1016 boxes, respectively. The
proof takes approximately 12 seconds.

x
1

x
3

M
4

M
5

45 50 55 60 65 70
5.5

6

6.5

7

7.5

FIG. 7. M1 P-covers M4 and M5; vertical and horizontal edges of
M4 and M5 are plotted in black and red, respectively; enclosures of
images of vertical and horizontal edges of M1 are plotted in cyan and
blue, respectively.

The transition matrix corresponding to covering relations
between sets Mi is

A1 =


0 0 0 1 1
0 0 1 0 0
1 0 0 0 0
1 1 0 0 0
0 1 0 0 0

 . (5)

The dominant eigenvalue of A1 is λ ≈ 1.4142. It follows that
the topological entropy of P can be bounded as:

h(P)≥ log(λ )> 0.3465. (6)

This completes the proof that P is chaotic in the topological
sense.
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FIG. 8. Symbolic dynamics with six topological rectangles Ni. Ver-
tical edges are plotted in black.

Fig. 8 shows topological rectangles N1, N2, . . . , N6 with an
improved bound on the topological entropy. The definitions
of these sets are given in the Appendix. Improving the bound
on the topological entropy is a challenging research problem.
The definitions of the topological rectangles with improved
topological entropy have to be very precise. Note that the left-
hand side vertical edge of N1 and the right hand side vertical
edge of N4 are very narrow. For wider edges proving the exis-
tence of covering relations involving N1 and N4 is not possible.
It is verified that there are 10 covering relations between the
sets Ni with the following transition matrix:

A2 =


0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 1 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0

 . (7)

During the proof vertical and horizontal edges of Ni are cov-
ered by 89 and 2289 boxes, respectively. The proof takes ap-
proximately 24 seconds. The dominant eigenvalue of A2 is
λ ≈ 1.6005. Hence, we have the following lower bound for
the topological entropy of P:

h(P)≥ log(λ )> 0.4703. (8)

This is a better lower bound than the one given in (6).
The topological entropy h(ϕ) of a continuous time system

is defined as the topological entropy of the time one map ϕ1
defined as ϕ1(x) = ϕ(1,x), where ϕ(t,x) denotes the trajec-
tory of the system based at x (see Ref. 23). It follows that one
may obtain a lower bound of the topological entropy of the
Colpitts oscillator from the lower bound (8) of the topological
entropy of the return map, and the upper bound τmax = 13.54
of the return time for the sets N1, N2, . . . , N6

h(ϕ)≥ h(P)
τmax

>
0.4703
13.54

> 0.0347. (9)

C. Systematic search for periodic orbits

In this section, we study the existence of unstable periodic
orbits of the return map P using the combination of the method
of close returns, the (standard) Newton method and the inter-
val Newton method. Non-rigorous estimates of the topolog-
ical entropy of P based on the number of unstable periodic
orbits are calculated.

In order to locate unstable periodic orbits embedded in the
attractor we use the method of close returns24. In this method
a trajectory of a given length N is considered and δ pseudo
periodic orbits with periods p≤ pmax are located. Let us con-
sider a trajectory (wi)

N
i=1 of the map P, where wi+1 = P(wi).

The sequence (wi,wi+1, . . . ,wi+p−1) is called a δ pseudo pe-
riodic orbit with the period p if ‖wi+p−wi‖ ≤ δ . For each δ

pseudo periodic orbit, we attempt to locate a true period-p or-
bit in its neighborhood. First, we improve the approximation
of a location of a periodic orbit. This is achieved by applying
the Newton method to the map F defined in (4). The Newton
operator

N(w) = w−F ′(w)−1F(w), (10)

is applied iteratively with the initial point being the position of
a δ pseudo periodic orbit. Convergence of the Newton method
indicates that a true periodic orbit exists. The elimination pro-
cedure based on orbit distance is used to skip periodic orbits
found before and to confirm that the minimum period of the
periodic orbit found is p. The results obtained for various
trajectory lengths N are presented in Table. III. During the
computations we use δ = 0.1 and pmax = 20.

TABLE III. The number of period-p orbits found using the method
of close returns for different length N of observed trajectories.

p N = 107 N = 108 N = 1.8·108 N = 2·108

1 1 1 1 1
2 1 1 1 1
3 0 0 0 0
4 7 7 7 7
5 0 0 0 0
6 12 12 12 12
7 6 6 6 6
8 36 36 36 36
9 12 12 12 12
10 104 104 104 104
11 50 50 50 50
12 306 306 306 306
13 164 164 164 164
14 937 947 947 947
15 583 598 598 598
16 2532 2926 2927 2927
17 1606 2035 2044 2044
18 5283 9067 9248 9263
19 3358 6753 7047 7077
20 8320 23807 26652 27069

1–20 23318 46832 50162 50624

One can see that the results obtained for N = 1.8·108 and
N = 2·108 with p≤ 17 are the same. One may conclude that
there is a good chance that all periodic orbits with periods
n≤ 17 are found. On the other hand the total number of peri-
odic orbits found when N is increased from 1.8·108 to 2·108
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grows by 462. This means that there are perhaps some peri-
odic orbits with periods n ≥ 18 which are not found by the
search procedure. Locating these orbits would require consid-
ering even longer trajectories.

The last step is to prove the existence of periodic or-
bits found. This is done using the interval Newton opera-
tor (2). Let us assume that w̄ = (w̄1, w̄2, . . . , w̄p) is an ap-
proximate position of the periodic orbit found by applying
the standard Newton operator to a δ pseudo periodic orbit
(wi,wi+1, . . . ,wi+p−1). We construct an interval vector w cen-
tered at w̄, evaluate the interval Newton operator (2) for the
map F defined in (4) and verify the existence condition (3).
Using this approach we have successfully proved the exis-
tence of all 50624 periodic orbits reported in Table III. It is
verified that all these orbits are unstable.

In this section, we have presented results on the number of
periodic orbits obtained by applying the Newton method (both
in the standard and interval versions) to the map F defined
in (4) and the initial condition (wi,wi+1, . . . ,wi+p−1) being the
position of a δ pseudo periodic orbit. An alternative approach
is to apply the Newton method to the map f = Pp− id with
the initial condition wi, where id is the identity map . It is
clear that zeros of f are also fixed points of Pp. The useful-
ness of this approach is confirmed for proving the existence
of periodic orbits with periods 1, 2 and 4. For longer orbits
the method usually fails and the proof of existence cannot be
carried out. This reason is that the evaluation of f requires
the integration of the vector field and its variational equation
along the whole orbit. As a result the matrix f ′(x)−1 is ill-
conditioned and in consequence the condition N(x) ⊂ x usu-
ally does not hold. On the other hand, in case of the map F ,
instead of computing the entire orbit, we calculate short parts
of the periodic trajectory only. As a result rounding errors
are smaller, the wrapping effect is reduced and the procedure
enables us to prove the existence of longer periodic orbits.

D. Non-rigorous estimates of the topological entropy

Let us now compare the bound (8) with estimates of the
topological entropy based on the number of periodic orbits re-
ported in Table III. Under certain assumptions the topological
entropy of f can be computed as

h( f ) = lim
p→∞

log(Cp)

p
, (11)

where Cp denotes the number of fixed points of f p (compare
Ref. 19). Hence, the expression

hp =
log(Cp)

p
(12)

for a large p is frequently used as an estimate of h( f ). The re-
sults obtained by applying this formula to the results presented
in the last column of Table III are plotted in Fig. 9 using blue
star symbols. One can see that for p≥ 14 the estimates hp os-
cillate between 0.6 and 0.7. For comparison, we also plot the
results obtained by applying the formula (12) to the number of

fixed points of Pp based on the existence of symbolic dynam-
ics with the transition matrix (7). The number of fixed points
of Pp supported by covering relations with the transition ma-
trix A can be computed as the trace (the sum of the diagonal
elements) of Ap. One can see that there are no periodic or-
bits with odd periods supported by the existence of symbolic
dynamics. Moreover, for even periods the estimates based on
the existence of symbolic dynamics are much lower than the
ones based on the number of periodic orbits found. It follows
that the symbolic dynamics with the transition matrix (7) does
not capture the whole topological complexity of P. Finding a
better lower bound of the topological entropy of P is a subject
of future research.

p

h
p
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0.8

FIG. 9. Estimates hp = p−1 log(Cp) of the topological entropy of P
based on the number Cp of fixed points of Pp; the results based on
the number of periodic orbits found are plotted as red circles; the re-
sults based on the existence of symbolic dynamics with the transition
matrix (7) are plotted as blue stars.

Let us now estimate the topological entropy of the flow (1).
Under certain assumptions the topological entropy of a con-
tinuous time system can be estimated based on short periodic
orbits using the following formula25

h(ϕ) = lim
t→∞

log(Ct)

t
, (13)

where Ct is the number of periodic orbits with the flow time
smaller or equal to t. Estimates ht = t−1 log(Ct) obtained us-
ing the results presented in Table III are plotted in Fig. 10.
Points at which estimates grow due to the existence of a pe-
riodic orbit with a given flow time are depicted as red dots.

In the region t ∈ [100,160] the estimates oscillate in the in-
terval [0.06,0.07]. A drop of estimates in the region t > 160
is caused by the fact that the search for periodic orbits of P
is limited to cycles with periods p ≤ 20, while some cycles
with periods p > 20 have flow times in the interval [160,180].
Let us also note that estimates presented in Fig. 10 are con-
siderably larger than the lower bound (9). This observation
confirms the statement that the complexity of the Colpitts os-
cillator is higher than the one revealed by the existence of cov-
ering relations with the transition matrix (7).
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FIG. 10. Estimates ht = t−1 log(Ct) of the topological entropy of the
flow (1) based on periodic orbits found.

V. CONCLUSIONS

Numerical study of the Colpitts oscillator was carried out.
It was shown that the circuit displays rich dynamical behav-
iors. The existence of periodic attractors was proved using
the interval Newton method. For the chaotic case, a trapping
region for the associated return map was constructed and the
existence of at least one attractor which belongs to this set was
proved. Using the method of covering relations it was proved
that the Colpitts oscillator is chaotic in the topological sense.
Positive lower bounds on the topological entropy of the return
map and of the flow were found. Using the combination of
interval arithmetic tools and the method of close returns, the
existence of several thousands of periodic orbits embedded in
the chaotic attractor was proved and accurate approximations
of the true value of the topological entropy of the system were
calculated.
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Appendix A: Definitions of polygons T , Mi, Ni

Definition of the trapping region T :

T = ((−1.89,2,0.88),(−2.51,2,1.16),(13.38,2,2.97),
(34.12,2,5.06),(74.24,2,7.93),(74.49,2,7.61),
(43.91,2,5.47),(15.92,2,2.97),(−1.89,2,0.88)).

Definitions of five topological rectangles Mi with complex
symbolic dynamics:

M1 = ((15.27530,2,2.98278),(15.77410,2,3.26645),
(17.50429,2,3.44020),(20.96468,2,3.78770),
(22.69487,2,3.96145),(22.66370,2,3.70614)),

M2 = ((26.93462,2,4.08910),(26.87227,2,4.33022),
(27.42602,2,4.38218),(27.97976,2,4.43413),
(28.10658,2,4.19313)),

M3 = ((30.09330,2,4.34408),(29.86504,2,4.58552),
(31.29907,2,4.69545),(32.73311,2,4.80537),
(32.76428,2,4.55716)),

M4 = ((48.63217,2,5.85495),(48.44513,2,6.09607),
(51.07938,2,6.29287),(56.34790,2,6.68646),
(58.98216,2,6.88326),(59.01333,2,6.63505)),

M5 = ((59.54330,2,6.66342),(59.51213,2,6.90454),
(64.74947,2,7.29281),(66.49525,2,7.42224),
(66.58877,2,7.16693)),

Definitions of six topological rectangles Ni with complex
symbolic dynamics:

N1 = ((−1.24825,2,1.05159),(−1.31314,2,1.06756),
(3.46233,2,1.79289),(6.30139,2,2.15371),
(6.99916,2,2.08150)),

N2 = ((13.21742,2,2.75667),(22.82477,2,3.73192),
(22.82779,2,3.93876),(14.05935,2,3.06063)),

N3 = ((24.61187,2,4.23147),(28.07769,2,4.47397),
(28.23679,2,4.19176),(24.63265,2,3.87121)),

N4 = ((29.92474,2,4.65675),(40.95065,2,5.42533),
(40.88203,2,5.33500),(30.14951,2,4.34308)),

N5 = ((47.73674,2,6.08905),(58.74350,2,6.87711),
(58.84618,2,6.59566),(48.00370,2,5.84137)),

N6 = ((59.48276,2,6.95592),(69.68865,2,7.60889),
(69.87347,2,7.37247),(59.58543,2,6.68573)).
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