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a b s t r a c t 

Determining how many limit cycles a planar polynomial system of differential equations 

can have is a remarkably hard problem. One of the main difficulties is that the limit cycles 

can reside within areas of vastly different scales. This makes numerical explorations very 

hard to perform, requiring high precision computations, where the necessary precision is 

not known in advance. Using rigorous computations, we can dynamically determine the re- 

quired precision, and localize all limit cycles of a given system. We prove that the Songling 

system of planar, quadratic polynomial differential equations has exactly four limit cycles. 

Furthermore, we give precise bounds for the positions of these limit cycles using rigorous 

computational methods based on interval arithmetic. The techniques presented here are 

applicable to the much wider class of real-analytic planar differential equations. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

1. Introduction 

In 1900, at the International Congress of Mathematics held in Paris, David Hilbert presented ten open problems in math- 

ematics, and later published a more comprehensive list of 23 problems [1] aimed to challenge the mathematical community. 

Throughout the 20th century, these problems have received great attention, and still do. Today, most of the Hilbert problems 

have been resolved (two of them were deemed to be unresolvable), but a few ones still remain unsolved: one of these is

Hilbert’s 16th problem. 

Hilbert’s 16th problem has two distinct parts: one in real algebraic geometry, and one in dynamical systems. We will 

address the latter which asks for H(n ) – the maximal number of limit cycles (isolated periodic orbits) the family of two-

dimensional polynomial vector fields of degree n can display. This problem has been highlighted in Steven Smale’s list of 

challenging problems for the 21st century [2] (it appears as number 13 there), and is phrased roughly as follows: 

Consider the differential equation in R 

2 : 

(� ) 

{
˙ x = P n (x, y ) , 
˙ y = Q n (x, y ) . 

where P n and Q n are polynomials of degree at most n . Is there a bound H(n ) on the number of limit cycles the system ( � ) can

have, that only depends on the degree n ? 
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Note that the bound H(n ) should be uniform, that is, it should not depend on the particular polynomial vector field,

only on its degree n . Hilbert’s 16 problem has a remarkable history, and finding upper bounds for H(n ) in the general case

appears to be extremely hard. Indeed, very little progress has been made since Hilbert’s seminal talk. As of today, this

question is not resolved even in the simplest, quadratic, case ( n = 2 ). What is known, is that any given single polynomial

vector field can have only a finite number of limit cycles; this was (independently) proved in [3] and [4] . Partial results

for the quadratic case, and a general introduction to the bifurcation theory of planar polynomial vector fields can be found

in [5] . See also [6] for an overview of the problem. In terms of rigorous numerical studies of limit cycles of planar vector

fields, an early paper is [7] . It uses a rotated vector field to form an annulus containing a given (approximate) limit cycle.

The existence of a true limit cycle follows by verifying that the original vector field is transverse to the boundary of the

annulus—this can be achieved by local (rigorous) computations, rather than by integrating the system. Note that the method 

presented in [7] cannot be used to prove the uniquness of a limit cycle in a specified region. 

Even finding realistic lower bounds for H(n ) appears to be very hard; for some of the best known lower bounds,

see [8,9] ( n = 2 ), [10] ( n = 3 ), and [11] ( n ≥ 4 ). 

In this paper, we will focus on the Songling system; the three-parameter family of quadratic planar vector fields discussed 

in [8] . The system is defined by 

˙ x = λx − y − 10 x 2 + ( 5 + δ) xy + y 2 , 
˙ y = x + x 2 + ( −25 + 8 ε − 9 δ) xy , 

(1) 

where δ = −10 −13 , ε = −10 −52 , and λ = −10 −200 . In [8] , it is proved that this system has at least four limit cycles. Normal

form theory is applied in [12] to prove the uniqueness of periodic orbits in a neighborhood of the singular point (0,0). 

The main goal of this work is to confirm that the system (1) supports exactly four limit cycles and to give precise bounds

for positions of initial points of these limit cycles. Additionally, we would like to show that rigorous computational methods 

based on interval arithmetic [13] can be useful in studies related to the 16th Hilbert problem [4,6,14,15] . 

Theorem 1. The Songling system (1) has exactly four limit cycles. 

Proof. From [12] it follows that we only have to prove that no limit cycles of (1) intersect the line segment (x, y ) ∈ { 0 } ×
[0 . 004 , 0 . 04] . This is achieved by combining Lemma 8 with the enclosure of the largest limit cycle, given in Lemma 2 . �

Computations reported in this work are carried out using the CAPD library [16] . The MPFR library [17] is used for the

multiple-precision support. Computation times are reported for a single core 3.5 GHz processor. 

Following the convention in the literature on interval arithmetic, we denote intervals by bold letters. For example the 

closed interval with the endpoints x l ≤ x r is denoted by x = [ x l , x r ] . For the sake of brevity, we use a short notation to define

intervals. For example 9 . 80749 8 
6 

denotes the interval [9.807496,9.807498]. 

2. Preliminaries 

The system (1) has two equilibria (0,0) and (0,1). Let us consider the line � = { (x, y ) : x = 0 } containing both equilibria.

For (x, y ) ∈ � we have 

˙ x = −y + y 2 , 
˙ y = 0 . 

(2) 

From (2) it follows that within � the derivative ˙ x is negative for y ∈ I = (0 , 1) and positive for y �∈ [0 , 1] . It is known (by

index theory) that each limit cycle has to surround a singular point. It follows that each periodic orbit of (1) has to intersect

the interval (0 , I) ⊂ �, where (0 , I) denotes a two-dimensional interval vector, with an equivalent notation { 0 } × I. 

Let us consider the return map P : I �→ I defined as follows. For y ∈ I the image P (y ) is defined by (0 , P (y )) =
φ(τ (0 , y ) , (0 , y )) , where φ(t, (x, y )) is a trajectory of (1) starting at (x, y ) and τ (x, y ) is the smallest positive number t

such that φ(t, (x, y )) ∈ (0 , I) . If the trajectory φ(t, (0 , y )) does not return to (0 , I) then P is not defined on y . 

3. The existence of limit cycles 

In this section we show that there exist at least four fixed points of P , and we provide very tight enclosures of their

positions. 

3.1. Non-rigorous computations 

First, let us study the dynamics of P using non-rigorous computations. During these computations a non-rigorous Tay- 

lor integration method with the order 100 and the absolute tolerance 10 −300 is used. We select points y k = 10 −k/ 3 for

k = 1 , 2 , . . . , 300 , evaluate P (y k ) and compute the difference f (y k ) = y k − P (y k ) . The results are plotted in Fig. 1 in the log-

arithmic scale. One can see that f changes the sign four times in the interval y ∈ [10 −100 , 10 −1 / 3 ] . The sign changes are

observed in the intervals [4 . 64 · 10 −75 , 10 −74 ] , [2 . 15 · 10 −21 , 4 . 65 · 10 −21 ] , [4 . 64 · 10 −8 , 10 −7 ] , [2 . 15 · 10 −2 , 4 . 64 · 10 −2 ] . The first

three sign changes are continuous and the jumps seen in the picture are caused by computing f (y ) = y − P (y ) only at dis-

crete values and using the logarithmic scale. 
2 



Z. Galias and W. Tucker Applied Mathematics and Computation 415 (2022) 126691 

Fig. 1. Plot of the difference f (y ) = y − P(y ) for y ∈ [10 −100 , 10 −1 / 3 ] in the logarithmic scale. Note that f (y ) changes sign four times. 

 

 

 

 

 

 

 

 

 

In the interval [2 . 15 · 10 −2 , 4 . 64 · 10 −2 ] the return map is discontinuous. This interval contains a point y ≈ 0 . 03689 whose

trajectory escapes to infinity. However, the map f changes sign within a smaller interval [4 · 10 −2 , 4 . 64 · 10 −2 ] where f is

continuous. Therefore, one may expect that f (y ) has four zeros in the interval y ∈ [10 −100 , 10 −1 / 3 ] which means that P has

four fixed points in this interval. The results presented in Fig. 1 provide approximate positions of the fixed points which

may be used as starting points for the Newton method to obtain better approximations. 

3.2. Topological approach 

The existence of a fixed point can be proved using the following topological lemma. 

Lemma 1. Let g be a continuous map defined on an interval x . If either g(x ) ⊂ x or x ⊂ g(x ) , then g has a fixed point in x . 

In order to carry out the proof of existence of a fixed point of P in y = [ y l , y r ] , one has to find enclosures of P (y l ) , P (y r ) ,

and show that certain inequalities regarding these enclosures and the endpoints of y are satisfied. Additionally, one has to 

prove that P is well defined on [ y l , y r ] . This can be done by finding an enclosure of P ([ y l , y r ]) . All these computations can

be carried out using interval arithmetic tools for the rigorous integration of nonlinear vector fields. 

The existence of four fixed points of P is formulated in the following lemma. 

Lemma 2. Each of the intervals 

[ y 1 l , y 1 r ] = 0 . 0426896038820 85 
75 

, 

[ y 2 l , y 2 r ] = 6 . 6 6 6 6 60148 2 
1 

· 10 −8 , 

[ y 3 l , y 3 r ] = 2 . 24780594 8 
7 

· 10 −21 , and 

[ y 4 l , y 4 r ] = 7 . 07106781186547524 5 
4 

· 10 −75 

contains a fixed point of P . 

Proof. The following inequalities are verified: 

P (y 1 l ) − y 1 l < −5 . 06 · 10 −15 , P (y 1 r ) − y 1 r > 4 . 93 · 10 −15 , 

P (y 2 l ) − y 2 l > 2 . 58 · 10 −57 , P (y 2 r ) − y 2 r < −2 . 32 · 10 −57 , 

P (y 3 l ) − y 3 l < −5 . 05 · 10 −123 , P (y 3 r ) − y 3 r > 1 . 29 · 10 −123 , 

P (y 4 l ) − y 4 l > 5 . 03 · 10 −295 , and P (y 4 r ) − y 4 r < −6 . 23 · 10 −293 . 

For each i = 1 , 2 , 3 , 4 an enclosure of P ([ y il , y ir ]) is found which proves that P is well defined on [ y il , y ir ] . The assertion

follows. �

The computations are carried out using the CAPD library. Multiple-precision interval computations with the precision of 

up to 1024 bits are used. The total computation time per fixed point varies from 4 s to 14 s. We illustrate the associated

limit cycles in Fig. 2 . 

3.3. The interval Newton method approach 

In this section, we present results on the existence and uniqueness of fixed points of P obtained using the interval

Newton operator. 
3 
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Fig. 2. Polar plot of the four limit cycles of Lemma 2 . The radius is in logarithmic scale. The two equilibria are plotted as red dots. Note that three of the 

four limit cycles surround the equilibrium at the origin. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

The interval Newton operator for the (continuously differentiable) map f : R �→ R and the interval y is defined as 

N(y ) = y − f (y ) / f ′ (y ) , (3) 

where y ∈ y . The most important property of the interval Newton operation states that if N(y ) is enclosed in the interior of y

then the interval y contains exactly one zero of f . To prove the existence of fixed points of P one applies the interval Newton

operator to the map f (y ) = y − P (y ) and verifies that the condition N(y ) ⊂ int (y ) holds. In this case the interval Newton

operator has the form N(y ) = y − (y − P (y )) / (1 − P ′ (y )) . Let us note that in this approach one needs rigorous enclosures of

both P (y ) and P ′ (y ) . Based on an enclosure of P ′ (y ) one may state what is the stability type of the fixed point. If | P ′ (y ) | < 1

( | P ′ (y ) | > 1 ) then the fixed point is stable (unstable). Once the existence of a fixed point is proved one may iterate the

interval Newton operator to obtain very accurate enclosures for the position of this fixed point. 

The following lemma presents results on stability types and bounds for positions of four fixed points of P . 

Lemma 3. The interval 

y 1 = 0 . 042689603882080 0619842959753055429655870 0142980749 8 
6 

contains a single (stable) fixed point of P . P ′ (y 1 ) ⊂ 9 . 11 9 
8 

· 10 −5 . 

The interval 

y 2 = 6 . 6 6 6 6 60148152650573950 698517996479316281685290427336417127406 91 
88 

· 10 −8 contains a single (unstable) fixed 

point of P . 

P ′ (y 2 ) ⊂1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 049 2 
1 
. 

The interval 

y 3 =2 . 2478059477961305860583886189574201301744379417437915330332524455975299877707946920093780 3 1 · 10 −21 

contains a single (stable) fixed point of P . 

P ’ (y 3 ) ⊂ 0 . 999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

9936 6 
5 

The interval 

y 4 = 7 . 07106781186547524 40084 4362104 84 9039284 8359376 8847403658833986 8995366239157720186091861933830487

4530341735932808282429248647985062424748296 62807287186790 612435 6 4 · 10 −75 contains a single (unstable) fixed point 

of P . 

P ’ (y 4 ) ⊂ 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 062 9 
8 
. 

One can see that for fixed points in y 2 , 3 , 4 the derivative of P is very close to one. As a consequence a very accurate

integration method has to be used. For the numerical integration the rigorous Taylor integration method with the order 100 

is used. During the proof the computations are carried out using multiple-precision arithmetic with up to 2048 bits. The 

computation time for a single fixed point varies from 45 s to 40 min. 
4 
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4. The uniqueness of limit cycles 

In [12] , it is shown that there are exactly four fixed points of P outside the segment [0.004,0.04]. The existence of exactly

3 fixed points of P in the segment (0,0.004) is proved using the normal form theory. The existence of a single fixed point

in the segment (0.04,1) follows from the fact that the line 1 + x − 25 y = 0 which intersects the y axis at the point (0,0.04)

is transversal to the vector field and the property of the Songling system that it has at most one limit cycle around one of

the equilibria (for more details see [12] ). 

In order to prove that the Songling system has exactly four limit cycles it remains to show that P has no fixed points

in the segment [0.004,0.04]. In the following, using interval arithmetic tools we show that P has a single fixed point in the

segment [0.001,1). From Lemma 3 we know that this fixed point is not in [0.004,0.04]. 

During the computer assisted proof we will use the following technical lemmas. 

Lemma 4. If ȳ < P ( ̄y ) then there are no fixed points of P in the segment [ ̄y , P ( ̄y )] . If ȳ > P ( ̄y ) then there are no fixed points of P 

in the segment [ P ( ̄y ) , ̄y ] . 

Proof. Let us consider the case ȳ < P ( ̄y ) . Let us assume that P (y ) = y for y ∈ [ ̄y , P ( ̄y )] . It follows that y � = ȳ and trajectories

φ(t, (0 , y )) and φ(t, (0 , ̄y )) intersect for t ∈ [0 , τ (0 , y )] , which contradicts the uniqueness of solutions of (1) . �

A similar result can be formulated for the inverse of P . 

Lemma 5. If ȳ < P −1 ( ̄y ) then there are no fixed points of P in the segment [ ̄y , P −1 ( ̄y )] . If ȳ > P −1 ( ̄y ) then there are no fixed

points of P in the segment [ P −1 ( ̄y ) , ̄y ] . 

Using Lemma 4 one may construct a sequence of points y 0 < y 1 < y 2 < . . . < y n such that the segment [ y 0 , y n ] does not

contain fixed points of P or a sequence of points y 0 > y 1 > y 2 > . . . > y n such that the segment [ y n , y 0 ] does not contain

fixed points of P . This is achieved by selecting a point y 0 ∈ (0 , 1) and computing rigorous bounds for its images under P .

To illustrate this procedure let us assume that P (y 0 ) > y 0 . In the k th step of the procedure using rigorous computations we

obtain an enclosure [ y k +1 ,l , y k +1 ,r ] of P (y k ) and we select y k +1 = y k +1 ,l . After n steps we obtain the point y n . It follows from

Lemma 4 that the interval [ y 0 , y n ] does not contain fixed points of P . For the case P (y 0 ) < y 0 we select y k +1 = y k +1 ,r . After

n steps we obtain the interval [ y n , y 0 ] with no fixed points of P . A similar approach may be used to construct intervals not

containing fixed points using Lemma 5 . We will refer to the approach to exclude the existence of fixed points of P based on

Lemmas 4 and 5 as the iteration based method . 

Let us note that using Lemmas 4 and 5 one can exclude the existence of fixed points of P also in in-

tervals containing points where P is not defined. For the Songling system one can show that the trajectories 

φ(t, (0 , 0 . 03689093)) and φ(t, (0 , 0 . 03689096)) intersect the line � at y < 0 and y > 1 , respectively. It follows that the

interval [0 . 036 89093 , 0 . 036 89096] contains a point y ∗ such that the trajectory φ(t, (0 , y ∗)) escapes to infinity ( P is not de-

fined at y ∗). On the other hand, computing the trajectory starting at (0,0.364) one may show that P (0 . 0364) > 0 . 3766 . From

Lemma 4 it follows that there are no fixed points of P in [0 . 0364 , 0 . 3766] ⊃ [0 . 036 89093 , 0 . 036 89096]  y ∗. 

It will be shown that the iteration based method is not efficient for small y . An alternative approach which will be called

the derivative based method is based on the evaluation of P ′ . In this approach we will use the following lemma. 

Lemma 6. Let us assume that 1 �∈ P ′ (y ) where y = [ y l , y r ] ⊂ (0 , 1) . If (y l − P (y l ))(y r − P (y r )) > 0 then P (y ) � = y for y ∈ y . If

(y l − P (y l ))(y r − P (y r )) < 0 then y contains a single fixed point of P . 

Proof. From the assumption 1 �∈ P ′ (y ) it follows that the function f (y ) = y − P (y ) is strictly monotonic in y . If f (y l ) = y l −
P (y l ) and f (y r ) = y r − P (y r ) are of the same sign then f has no zeros in y , which means that P has no fixed points in this

interval. If f (y l ) and f (y r ) are of opposite signs then from the monotonicity of f it follows that f has a single zero in y and

hence that P has a single fixed point in y . �

To prove that P has no fixed points in the interval y = [ y l , y r ] two conditions have to be verified. The first condition

(P (y l ) − y l )(P (y r ) − y r ) > 0 requires evaluation of P over y l and y r and is usually easy to verify. The second condition re-

quires evaluation of the derivative P ′ over the whole interval y and verifying that the result does not contain 1. This can be

done in a single evaluation of P ′ only for small intervals. For larger intervals one may split the interval y into several smaller

intervals and verify the condition P ′ (y ) � = 1 separately for each of them. 

For the proof that the interval [0.001,1) contains a single fixed point of P we use the combination of the iteration based

method, the derivative based method and the Lyapunov function method. First, using the Lyapunov function method, we 

show that there are no fixed points in the segment [0.98,1). More specifically, we show that P −1 is increasing in the segment

[0.98,1). 

Lemma 7. P −1 (y ) > y for y ∈ [0 . 98 , 1) . 

Proof. The change of variables z = y − 1 shifts the equilibrium (0,1) to the origin. In these variables the Songling system has

the form: 

˙ x = cx + z − 10 x 2 + axz + z 2 , 
˙ z = −dx + x 2 + bxz , 
5 
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where a = 5 + δ, b = −25 + 8 ε − 9 δ, c = 5 + δ + λ, d = 24 − 8 ε + 9 δ. Let us define the Lyapunov function 

V ( x, z ) = 0 . 5 d ( ( d + 1 ) x + cz ) 
2 + 0 . 5 

(
c 2 + ( d + 1 ) 

2 
)
z 2 . 

The Lyapunov function is nonnegative and vanishes only at the origin. The derivative of V with respect to t is 

d V 

d t 
= cd (d + 1)(x 2 + z 2 ) + d(d + 1)(c − 10(d + 1)) x 3 + cd (d + 1) z 3 

+((b + d) (d + 1) 
2 + (bc 2 + acd )(d +1)) xz 2 + (d(d + 1)( bc + (a + c 2 − 10 cd )(d + 1)) + (d + 1) 

2 
) x 2 z. 

Let us assume that x 2 + z 2 = r 2 . The first term is equal to cd(d + 1) r 2 . The absolute value of the remaining terms can be

bounded by er 3 , where e = 1 . 482 · 10 5 . It follows that if r < cd(d + 1) /e ≈ 0 . 02026 then 

d V 
d t 

is positive and the Lyapunov

function V (x, z) is increasing along trajectories. 

Let us come back to the Songling system. It can be verified that P −1 (0 . 98) > 0 . 995 and that during the evaluation of

P −1 (0 . 98) the trajectory does not leave the circle centered at (0,1) with the radius 0.02026. It follows that V (x, y − 1) de-

creases during the evaluation of P −1 (y ) for each y ∈ [0 . 98 , 1) and hence V (0 , y − 1) > V (0 , P −1 (y ) − 1) , i.e., 

(y − 1) 2 > (P −1 (y ) − 1) 2 . (4) 

It follows that P −1 (y ) > y for y ∈ [0 . 98 , 1) . �

Lemma 8. The segment [0 . 027 , 0 . 99] contains a single fixed point of P . 

Proof. Applying the iteration based method for the map P with y 1 = 0 . 98 and n = 4 we obtain y 4 < 0 . 042689603882 . It

follows from Lemma 4 that the interval [0.042689603882,0.99] does not contain fixed points of P . 

Applying the iteration based method for the map P with y 1 = 0 . 027 and n = 351 we obtain y 351 > 0 . 042689603881 . It

follows that the interval [0.027,0.042689603881] does not contain fixed points of P . 

It remains to show that the segment 0 . 04268960388 2 
1 

contains a single fixed point of P . Let us consider the segment

0 . 0426 90 
89 

. One can show that P (0 . 042689) > 4 . 26896038 and that P (0 . 042690) > 4 . 26896039 . It follows that the segment

0 . 0426 90 
89 

contains at least one fixed point of P . One can also show that 1 �∈ P ′ (0 . 0426 90 
89 

) . From Lemma 6 it follows that the

segment 0 . 0426 90 
89 

contains a single fixed point of P . �

Let us note that the iteration based method can be used to handle regions very close to y = 1 . For example apply-

ing this procedure for the map P −1 with y 1 = 0 . 99 and n = 10 we obtain y 10 > 0 . 9999999999999999993 . It follows from

Lemma 5 that the interval [0.99,0.9999999999999999993] does not contain fixed points of P . 

The iteration based method is not efficient for y < 0 . 027 due to the fact that the distance | y − P (y ) | decreases fast when

y is decreased. For example to carry out the proof for the segment [0.020,0.021] one needs 3210 evaluations of P and the

computation time is 15 min. For the segment [0.010,0.011] the number of evaluations exceeds 1 . 4 · 10 6 and the computation

time is 65 h. 

As it has been mentioned before an alternative approach is based on the evaluation of P ′ (see Lemma 6 and the following

discussion). This method allows to reduce the number of evaluations when compared with the iteration based method. For 

example for the segment [0.01,0.011] the number of evaluations is two times smaller. However the computation time is 

longer because the evaluation of P ′ takes longer than the evaluation of P . 

A better approach is to use Lemma 6 after a change of coordinates. We will use the polar coordinates: x = r cos ϕ, y =
r sin ϕ (compare also [12] ). From r ̇ r = x ̇ x + y ̇ y one obtains 

˙ r = 

˙ x cos ϕ + 

˙ y sin ϕ = λr cos 2 ϕ + r 2 cos ϕ 

(
( 6 + d ) cos ϕ sin ϕ − ( 14 + 9 δ − 8 ε ) sin 

2 ϕ − 10 ) 
)
. 

From ˙ x = ˙ r cos ϕ − r sin ϕ ˙ ϕ and ˙ y = ˙ r sin ϕ + r cos ϕ ˙ ϕ one obtains 

˙ ϕ = 

˙ y cos ϕ − ˙ x sin ϕ = 1 − λ cos ϕ sin ϕ + r ( 6 + δ) cos 3 ϕ + r 
(
( 8 ε − 9 δ − 14 ) cos 2 ϕ sin ϕ − sin ϕ − ( 5 + δ) cos ϕ 

)
. 

It follows that the Songling system in the polar coordinates is defined as 

˙ r = r 
1 ( ϕ ) + r 2 R ( ϕ ) , 
˙ ϕ = 1 − 
2 ( ϕ ) + r�( ϕ ) , 

(5) 

where 


1 ( ϕ ) = λcos 2 ϕ , 
2 ( ϕ ) = λ cos ϕ sin ϕ , R ( ϕ ) = cos ϕ 

(
( 6 + d ) cos ϕ sin ϕ −( 14 + 9 δ−8 ε ) sin 

2 ϕ −10 

)
, 

�( ϕ ) = ( 8 ε − 9 δ − 14 ) cos 2 ϕ sin ϕ − sin ϕ − ( 5 + δ) cos ϕ + ( 6 + δ) cos 3 ϕ. 

Lemma 9. P (y ) > y for y ∈ [0 . 001 , 0 . 027] . 

Proof. In the proof we use Lemma 6 . First, it is verified that P (0 . 027) > 0 . 027 and P (0 . 001) > 0 . 001 . It remains to show

that 1 �∈ P ′ ([0 . 001 , 0 . 027]) . The evaluation of P ′ (y ) is carried out in the polar coordinates. From (5) it follows that ϕ grows

as long as 

r < 

1 − max ϕ 
2 (ϕ) 

max ϕ | �(ϕ) | . 
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One can see that | 
2 (ϕ) | < 0 . 5 λ. Using interval arithmetic tools we show that | �(ϕ) | < c = 7 . 1 . Using the bisection method

the interval t ∈ [0 , 2 π ] is divided into 1288 subintervals t i . Enclosures z i of �(t i ) are computed and it is verified that | z i | < c.

It follows that ˙ ϕ is positive (i.e. ϕ grows) when 

r ≤ 0 . 14 < 

1 − 0 . 5 λ

c 
. 

Next, we verify that during the evaluation of P (0 . 027) the trajectory does not leave the circle centered at the origin with

the radius 0.14. It follows that for y ∈ (0 , 0 . 027] the return map P (y ) can be computed by integrating the one-dimensional

vector field 

d r 

d ϕ 

= 

r
1 (ϕ) + r 2 R (ϕ) 

1 − 
2 (ϕ) + r�(ϕ) 
(6) 

for ϕ ∈ [0 . 5 π, 2 . 5 π ] with the initial condition r(ϕ = 0 . 5 π) = y . 

The bisection method is used to split the interval [0.001,0.027] into 20809 subintervals. For each subinterval the map P 

and its derivative are computed by integrating the vector field (6) for ϕ ∈ [0 . 5 π, 2 . 5 π ] and it is proved that P ′ (y ) � = 1 for

y ∈ [0 . 001 , 0 . 027] . The total computation time is 40 h. The assertion follows from Lemma 6 . �

Let us note that the method to evaluate P ′ which is used in the proof of Lemma 9 is much faster than the standard

approach in which the vector field (1) is integrated. For example in the case of the interval y = [0 . 010 , 0 . 011] the number

of evaluations needed to prove that 1 �∈ P ′ (y ) is 181 and the computation time is 8 min compared to more than 1 . 4 · 10 6 

evaluations and 65 h of computations for the standard approach. The most fine splitting of the interval [0.001,0.027] is 

necessary close to the endpoint 0.001. For example the calculations involving the interval [0.0 01,0.0 02] with the width 

being less than 4% of the total width took 70% of the computation time. 

From Lemmas 7, 8 , and 9 it follows that the segment [0.001,1) contains a single fixed points of P . 

Additionally, we prove that there are no fixed points of P in a neighborhood of the origin. 

Lemma 10. P (y ) < y for y ∈ (0 , 2 · 10 −202 ] . 

Proof. The Songling system can be written as: 

˙ x = λx − y − 10 x 2 + axy + y 2 , 
˙ y = x + x 2 + bxy , 

where a = 5 + δ, b = −25 + 8 ε − 9 δ. Let us define the Lyapunov function 

V (x, y ) = (1 + 0 . 25 λ2 ) y 2 + (x − 0 . 5 λy ) 2 . 

The Lyapunov function is nonnegative and V (x, y ) = 0 only at the origin. The derivative of V with respect to t is 

d V 
d t 

= λ
(
x 2 + y 2 

)
− ( 20 + λ) x 3 − λy 3 + 

(
2 + 2 b + bλ2 − aλ

)
xy 2 + 

(
2 + 2 a + λ2 − bλ + 10 λ

)
x 2 y. 

Let r = 

√ 

x 2 + y 2 . The first term is equal to λr 2 (recall that λ is negative). The absolute value of the remaining terms can be

bounded by 40 r 3 . It follows that for r < | λ| / 40 = 2 . 5 · 10 −202 the Lyapunov function V (x, y ) is decreasing along trajectories. 

In the next step, we verify that P (2 · 10 −202 ) < 2 · 10 −202 and that during the evaluation of P (2 · 10 −202 ) the trajectory

does not leave the circle centered at the origin with the radius 2 . 5 · 10 −202 . It follows that for y ∈ (0 , 2 · 10 −202 ] the Lya-

punov function V (x, y ) decreases during the evaluation of P (y ) and hence V (0 , y ) > V (0 , P (y )) , i.e. y 2 > P (y ) 2 . The assertion

follows. �

5. Conclusions 

As mentioned in the introduction, this paper has two main goals: (1) to prove that the Songling system has exactly four

limit cycles, and (2) to illustrate the powers (and potential future use) of rigorous computations based on interval arithmetic. 

For the problem we are considering here, the rigorous computations show their strength in producing coarse and tight 

enclosures of limit cycles, as illustrated in Lemma 2 and Lemma 3 , respectively. The same lemmas also give local unique-

ness results within each enclosure, leading to an exact count of the limit cycles. The weakness of the same computational

techniques lies in proving non -existence of limit cycles. This is a global problem, and as such requires much more computa-

tional effort. Small neighbourhoods of 0 and 1 are handled analytically by Lyapunov function methods, as in Lemma 10 and

Lemma 7 , respectively. But for the remaining sectors, our methods were not practical. As an illustration, Lemma 8 (clear-

ing the interval [2 . 7 · 10 −2 , 9 . 9 · 10 −1 ] from fixed points of P ) required 15 min to compute, whereas Lemma 9 (clearing

[10 −3 , 2 . 7 · 10 −2 ] ) took 40 h. 

Although we could (in principle) exhaust the remaining interval [2 · 10 −202 , 10 −3 ] , it would have required an enormous

amount of computing power. Instead, we used the analytical normal form result of [12] , which clears the larger interval

[0 . 0 , 4 · 10 −3 ] from fixed points of P . 
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