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Abstract: In this paper we perform a rigorous study of the H�enon map. We prove

with computer assistance the existence of symbolic dynamics for h

2

and h

7

and the

existence of periodic orbits of all periods but 3 and 5.
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1 Introduction

In this paper we consider the H�enon map de�ned by the following equation:

h(x; y) = (1 + y � ax

2

; bx); (1)

where a = 1:4 and b = 0:3 are the \classical" parameter values. Although the

de�nition of the H�enon map is very simple it displays very complicated dynamics.

A typical trajectory of the map is shown in Fig. 1.

In Section 2 we recall the technique of TS-maps and formulate two theorems

used in the following sections. In Section 3 we prove the existence of symbolic

dynamics for h

2

and what follows the existence of periodic points of h for all

even periods.

In [Zgliczy�nski 97b] the dynamics of topological horseshoe was proved for h

7

.

From this follows the existence of symbolic dynamics for h

7

and the existence

of periodic orbits of h of period 7n for all natural n. In Section 4 we repeat

the proof described in [Zgliczy�nski 97b] using interval arithmetic. We show that

using this tool the number of points for which we must check certain conditions

can be signi�cantly reduced. Then checking some more conditions we prove the

existence of periodic points with period 8 and all periods greater or equal to 10.

Finally by means of the interval Newton method we prove that within the

region [�5; 5]� [�5; 5] there exists no periodic point with period 3 or 5 and we

prove that there exist periodic points with period 9.

During all the computer{assisted proofs we use the procedures for interval

computations form BIAS and PROFIL packages [Kn�uppel 93]. Programs were

compiled using gnu C++ compiler (gcc version 2.7.2.1) and run on Sun Ultra

1 computer. The source code of the programs is available at the following www

location: http://fractal.zet.agh.edu.pl/�galias/int.html. Additionally

all the results were checked using the package for interval computations pre-

pared by the author in Turbo-Pascal 7.0 programming environment and run on

Pentium 166MHz.
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Figure 1: A trajectory of the H�enon map. 3000 points of the trajectory starting from

the initial conditions: x = 0, y = 0 after a short transient (100 iterations) are plotted.

2 TS{Maps

One of the tools we use in our study is the technique of TS-maps (topologi-

cal shifts) introduced in [Zgliczy�nski 97a, Zgliczy�nski 97b]. This technique can

be used to prove the existence of an in�nite number of periodic orbits for a

given system. It combines existence results based on the �xed point index the-

ory and computer{assisted computations, necessary to verify assumptions of the

existence theorem.

Here we consider a special case of TS{maps de�ned on two sets N

0

and N

1

.

For the general case see [Zgliczy�nski 97b]. Let the sets N

0

, N

1

, E

0

, E

1

, E

2

be as

depicted in Fig. 2. The important property of this sets is that E

0

lies on the left

hand side of the sets N

0

and N

1

, the set E

1

lies between N

0

and N

1

and E

2

lies

on the right hand side of N

0

and N

1

. Certain deformations of these sets are also

possible (see [Zgliczy�nski 97b]). Let W = N

0

[N

1

[E

0

[E

1

[E

2

. By intW we

denote the interior of W . We will say that the image of N

i

covers horizontally

the set N

j

if the image of one of the vertical edges of N

i

lies on the right hand

side of N

j

while the image of the second vertical edge lies on the left hand side

of N

j

. For example image of N

0

covers horizontally N

1

if f(L(N

0

)) � E

1

and

f(R(N

0

)) � E

2

or f(L(N

0

)) � E

2

and f(R(N

0

)) � E

1

, where L(N

0

) and R(N

0

)

denote respectively the left and right vertical edges of N

0

.

Let f be a continuous map de�ned on N

0

[N

1

. In our analysis we consider

two special cases of TS-maps. They are described in detail in [Galias 97]. The

�rst case involves maps with topological horseshoe embedded (compare Fig. 2a).
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Figure 2: Images of sets N

0

and N

1

for the horseshoe map (a) and the deformed

horseshoe map (b). For the horseshoe map the images of vertical edges of N

0

lie one

in E

0

and the second in E

2

and similarly for N

1

. For the deformed horseshoe the only

di�erence is that the image of one of the vertical edges of N

1

is enclosed in E

1

instead

of E

2

Theorem1. If f(N

0

); f(N

1

) � intW , the image of N

0

covers horizontally the

sets N

0

and N

1

(vertical edges of N

0

are mapped by f in such a way that the

image of one of the edges is enclosed in E

0

, while the second one is enclosed

in E

2

), and the image of N

1

covers horizontally N

0

and N

1

then for any �nite

sequence a

0

; a

1

; : : : ; a

n�1

2 f0; 1g

n

there exists a point x satisfying

f

i

(x) 2 N

a

i

for i = 0; : : : ; n� 1 and f

n

(x) = x:

In this case one can also prove that the full shift on two symbols with the

transition matrix [Robinson 95]

�

1 1

1 1

�

(2)

is embedded in the map f . Non-zero element a

ij

of the transition matrix means

that the image of N

i

covers horizontally N

j

(we can �nd a point x 2 N

i

such

that f(x) 2 N

j

).

The next theorem is important for maps with the deformed horseshoe em-

bedded (compare Fig. 2b). From the set of n-element sequences with elements

from the set f0; 1g let us choose sequences, which do not contain the subsequence

(1; 1):

T

n

= f (a

0

; : : : ; a

n�1

) 2 f0; 1g

n

: (a

j

; a

(j+1) mod n

) 6= (1; 1) for 0 � j < n g: (3)

Theorem2. If f(N

0

); f(N

1

) � intW , image of N

0

covers horizontally the sets

N

0

and N

1

, image of N

1

covers horizontally the sets N

0

, then for any �nite

sequence a = (a

0

; a

1

; : : : ; a

n�1

) 2 T

n

there exists a point x satisfying

f

i

(x) 2 N

a

i

for i = 0; : : : ; n� 1 and f

n

(x) = x: (4)

In this case the subshift on two symbols with the transition matrix

�

1 1

1 0

�

(5)
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is embedded in f .

If f is one-to-one one has to check only the conditions concerning the edges

of sets N

i

. Instead of proving that f(N

i

) � intW it is su�cient to prove that

f(bd(N

i

)) � intW , where bd(N

i

) denotes the border of the set N

i

. This is a

conclusion from Jordan's theorem (compare [Galias 97]).

3 Symbolic Dynamics for h

2

| Deformed Horseshoe

In this section we show using the technique described previously that the sub-

shift on two symbols with the transition matrix (5) (the deformed topological

horseshoe) is embedded in h

2

.
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Figure 3: The de�nition of the sets N

0

and N

1

for the proof of symbolic dynamics for

h

2

Let us de�ne the sets N

i

as follows: N

0

is a quadrangle A

1

A

2

A

3

A

4

and N

1

is the quadrangle A

5

A

6

A

7

A

8

, where A

1

= (�0:82; 0:29), A

2

= (�0:82; 0:39),

A

3

= (�0:26; 0:34), A

4

= (�0:26; 0:24), A

5

= (0; 0:19), A

6

= (0:08; 0:29), A

7

=

(0:42; 0:2) and A

8

= (0:34; 0:1) (compare Fig. 3). We also de�ne sets E

0

, E

1

and E

2

lying respectively to the left, between and to the right of the sets N

0

and N

1

. The set E

0

is a half{stripe lying on the left hand side of N

0

de�ned

by straight lines A

2

A

3

, A

4

A

1

and A

1

A

2

. E

1

is the quadrangle A

4

A

3

A

6

A

5

. E

2

is a half{stripe lying on the right hand side of N

1

, de�ned similarly as E

0

. Let

W = N

1

[N

2

[ E

0

[ E

1

[ E

2

.
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Figure 4: (a) the covering of the vertical edges of N

0

and N

1

with rectangles (notice

that the rectangles covering edges of N

0

are very thin as these edges are parallel to the

y axis) and its image under h

2

, (b) the covering of horizontal edges of N

0

and N

1

and

its image under h

2

obtained in computer assisted proof

With the computer assistance we have proved that the image of N

0

covers

horizontally N

0

and N

1

and the image of N

1

covers horizontally N

0

. This is

formally written in the following lemma.

Lemma 3.

1. h

2

(A

1

A

2

) � E

2

and h

2

(A

3

A

4

) � E

0

,

2. h

2

(A

5

A

6

) � E

0

and h

2

(A

7

A

8

) � E

1

,

3. h

2

(A

1

A

4

), h

2

(A

2

A

3

), h

2

(A

5

A

8

), h

2

(A

6

A

7

) � intW .

Proof. For the proof of 1 and 2 we have covered the vertical edges A

1

A

2

, A

3

A

4

,

A

5

A

6

and A

7

A

8

by 1, 1, 1 and 3 rectangles respectively. Using interval arithmetic

we have proved that their images under h

2

are enclosed in the appropriate sets
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E

i

. The covering of vertical edges with rectangles (two-dimensional intervals)

and their images under h

2

computed during the proof are shown in Fig. 4a. One

can clearly see that h

2

(A

1

A

2

) lies on the right hand side of N

1

, h

2

(A

3

A

4

) and

h

2

(A

5

A

6

) lie on the left hand side of N

0

and h

2

(A

7

A

8

) lies between N

0

and N

1

.

For the proof of 3 we have covered the horizontal edges A

1

A

4

, A

2

A

3

, A

5

A

8

and A

6

A

7

by 9, 11, 4 and 4 rectangles respectively. The covering of horizontal

edges with rectangles and their images under h

2

are shown in Fig. 4b. We have

checked that the images are enclosed within the set intW .

For the whole proof of the existence of symbolic dynamics for h

2

it was

su�cient to compute images of 34 rectangles under h

2

.

From Lemma 3 and Theorem 2 it follows that for every sequence of symbols

a = (a

0

; a

1

; : : : ; a

n�1

) 2 T

n

there exists a point x such that

h

2i

(x) 2 N

a

i

for i = 0; : : : ; n� 1 and h

2n

(x) = x:

In particular for every positive integer n there exists a periodic point of h

2

with

period n. Hence for every even integer n there exists a periodic point of the

H�enon map with period n. In this way we have also proved that the subshift on

two symbols with the transition matrix (5) is embedded in h

2

.

4 Symbolic Dynamics for h

7

| Topological Horseshoe

In [Zgliczy�nski 97b] the author introduced the quadrangles N

0

= A

1

A

2

A

3

A

4

,

N

1

= A

5

A

6

A

7

A

8

shown in Fig. 5 (notice that they are di�erent to the sets

de�ned in the previous section), where A

1

= (0:460; 0:01), A

2

= (0:595; 0:28),

A

3

= (0:691; 0:28), A

4

= (0:556; 0:01), A

5

= (0:588; 0:01), A

6

= (0:723; 0:28),

A

7

= (0:755; 0:28) and A

8

= (0:62; 0:01). He also de�ned the set E

0

as a part

of the plane lying above the straight line A

1

A

4

and on the left hand side of line

A

1

A

2

, E

1

= A

4

A

3

A

6

A

5

and the set E

2

consisting of points lying below line A

5

A

8

or below line A

6

A

7

and one the right hand side of line A

7

A

8

. The setW is de�ned

as before as W = N

0

[N

1

[E

0

[E

1

[E

2

. For these sets using the technique of

TS-maps he proved the existence of the topological horseshoe. He proved that

the full shift on two symbols with the transition matrix (2) is embedded within

the map h

7

. Zgliczy�nski did not use the interval arithmetic. Instead he computed

the 7

th

iteration of the H�enon map at some points and estimated the position of

nearby points after seven iterations by means of Lipschitz constant of the H�enon

map. The proof required computation of h

7

for approximately 60000 points.

Using the same sets N

i

and E

i

we have repeated the proof. In order to prove

the existence of symbolic dynamics associated with the full shift we have to prove

that the images of N

0

and N

1

under h

7

cover horizontally the set N

0

[N

1

.

Lemma 4. The image of N

0

under h

7

covers horizontally N

0

and N

1

, i.e.,

h

7

(A

1

A

2

) � E

2

and h

7

(A

3

A

4

) � E

0

;

h

7

(A

1

A

4

); h

7

(A

2

A

3

) � intW:

The image of N

1

under h

7

covers horizontally N

0

and N

1

, i.e.,

h

7

(A

5

A

6

) � E

0

and h

7

(A

7

A

8

) � E

2

;

h

7

(A

5

A

8

); h

7

(A

6

A

7

) � intW:
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Figure 5: The de�nition of the sets N

0

and N

1

for the proof of symbolic dynamics for

h

7

(a) (b)
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Figure 6: (a) the covering of the vertical edges of N

0

and N

1

with rectangles and their

images under h

7

, (b) the covering of horizontal edges of N

0

and N

1

and their images

under h

7
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Proof. The proof was carried out using interval arithmetic. The covering of verti-

cal edges with rectangles and their images under h

7

are shown in Fig. 6a. Similar

covering of horizontal edges and its image are shown in Fig. 6b. We have checked

that they are enclosed in appropriate sets. For the proof of the existence of topo-

logical horseshoe it was su�cient to compute the images of 131 rectangles under

h

7

.

Notice that the number of rectangles for which the image is computed is

signi�cantly reduced when compared to the original proof. Probably Zgliczy�nski

overestimated the error (he did not use the interval arithmetic).

5 Periodic Points with Periods n � 7, n 6= 9

Lemma 4 states that the images of sets N

i

under h

7

covers horizontally the sets

N

0

and N

1

. It follows that for every natural n there exists a periodic point of

h with period 7n. In order to prove the existence of periodic points with other

periods we have checked the positions of N

0

and N

1

under h

i

, for i = 1; : : : ; 6.

Lemma 5.

1. The set h

1

(N

0

) covers N

1

, i.e.,

h

1

(A

1

A

2

) � E

2

; h

1

(A

3

A

4

) � E

1

[N

0

[E

0

; (6)

h

1

(A

2

A

3

); h

1

(A

4

A

1

) � intW: (7)

The set h

2

(N

0

) covers N

0

, i.e.,

h

2

(A

1

A

2

) � E

0

; h

2

(A

3

A

4

) � E

1

[N

1

[E

2

; (8)

h

2

(A

2

A

3

); h

2

(A

4

A

1

) � intW: (9)

The set h

i

(N

0

) for i = 3; : : : ; 6 covers both of the sets N

0

and N

1

, i.e.,

h

3

(A

1

A

2

); h

4

(A

3

A

4

); h

5

(A

1

A

2

); h

6

(A

3

A

4

) � E

2

; (10)

h

3

(A

3

A

4

); h

4

(A

1

A

2

); h

5

(A

3

A

4

); h

6

(A

1

A

2

) � E

0

; (11)

h

i

(A

2

A

3

); h

i

(A

4

A

1

) � intW for i = 3; : : : ; 6: (12)

2. Images of edges of N

1

under h

i

(for i = 1; : : : ; 6) have empty intersection

with the sets N

0

and N

1

.

h

1

(L); h

3

(L); h

5

(L) � E

0

and h

2

(L); h

4

(L); h

6

(L) � E

2

;

where L is any of the edges A

5

A

6

, A

6

A

7

, A

7

A

8

, A

8

A

5

.

Proof. For the proof the edges A

1

A

2

, A

2

A

3

, A

3

A

4

, A

4

A

1

, A

5

A

6

, A

6

A

7

, A

7

A

8

and A

8

A

5

were covered by 19, 11, 42, 11, 35, 7, 16, and 7 rectangles respectively.

The images of these rectangles under h

i

for i = 1; : : : ; 6 were computed. We have

checked that the conditions (6): : :(12) are ful�lled.

The results proved in lemmas 4 and 5 are summarized in Table 1. Using these

results one can easily prove the existence of periodic points for all periods greater

or equal to 7 with the exception of period 9.
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i h

i

(N

0

) h

i

(N

1

)

1 N

1

|

2 N

0

|

3 N

0

,N

1

|

4 N

0

,N

1

|

5 N

0

,N

1

|

6 N

0

,N

1

|

7 N

0

,N

1

N

0

,N

1

Table 1: Images of N

0

and N

1

under h

i

(i = 1; : : : ; 7). In the second and third columns

the sets which are covered horizontally by h

i

(N

0

) and h

i

(N

1

) are given

Lemma 6. For every integer n � 7, n 6= 9 there exist periodic point of h with

period n.

Proof. As an example we show how to prove the existence of period-8 orbit. Let

us consider the set N

1

. As it follows from lemma 4 the image of N

1

under h

7

covers N

0

. From lemma 5 it follows that h(N

0

) covers N

1

. Hence it is clear that

h

8

(N

1

) covers N

1

. Using similar argument as for the TS-maps one can prove

that there exists a point x within N

1

such that h

8

(x) = x. Now it is su�cient to

prove that 8 is the minimal period of x. But this is clear as h

i

(N

1

) has empty

intersection with N

1

for i = 1; : : : ; 6.

6 Periodic Points with Periods 1, 3, 5 and 9

So far we have shown that there exist periodic points with all periods but 1, 3,

5 and 9. The existence of a �xed point can be proved analytically. There exist

two such points (x

1

; bx

1

) and (x

2

; bx

2

) where

x

1;2

=

b� 1�

p

(1� b)

2

+ 4a

2a

:

One of the �xed points is embedded within the numerically observed strange

attractor.

In order to decide the existence of periodic points with periods 3, 5 and 9

within the set M = [�5; 5]� [�5; 5] we have used the interval Newton method

[Alefeld 94, G�otz 94]. This method allows to prove the existence and uniqueness

of �xed points within speci�c interval. It also allows to exclude the existence of

a �xed point within a given interval. The idea is to divide the set M into small

subsets for which assumptions of the interval Newton method can be checked.

Using this technique we have proved the following lemma.

Lemma 7. Let M = [�5; 5]� [�5; 5].

1. There exists no periodic point with period 3 within the set M .

2. There exists no periodic point with period 5 within the set M .

3. There exist 6 period-9 orbits within M .
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Proof. To prove part 1 we have covered the set M by 493 rectangles. Using the

interval Newton method we have proved that there are no period-3 orbits within

any of these rectangles. Similarly using 4241 rectangles for the covering of M we

have proved that there are no period-5 orbits within M . For the proof of part

3 the set M was covered by 2974053 rectangles. We have proved the existence

of exactly 54 periodic points with period 9 within M which correspond to 6

di�erent period-9 orbits.

7 Conclusions

In this paper we have shown rigorously with computer assistance that

A. the subshift on two symbols corresponding to the deformed horseshoe is

embedded in h

2

,

B. the full shift on two symbols corresponding to the topological horseshoe is

embedded in h

7

,

C. h has periodic points of all periods but 3 and 5,

D. h has no periodic points with periods 3 and 5 within the set [�5; 5]� [�5; 5].

The symbolic dynamics for h

2

and h

7

is proved for invariant sets embedded

in the strange attractor observed numerically. Also all the periodic orbits the

existence of which is proved (apart from one of the �xed points) lie in the region

where the strange attractor is observed. This indicates that the dynamics of

the system is very complicated. However the existence of a strange attractor for

classical values of parameters still remains an open problem.

Acknowledgments

This work was sponsored Polish Scienti�c Grant no. 0449/P3/94/06 and by the

University of Mining and Metallurgy, grant no. 10.120.132. The author would

like to acknowledge fruitful discussions with Dr. Piotr Zgliczy�nski.

References

[Alefeld 94] Alefeld, G.; \Inclusion methods for systems of nonlinear equations | the

interval Newton method and modi�cations"; Topics in Validated Computations, J.

Herzberger ed., Elsevier Science 1994, 7{26.

[G�otz 94] G�otz, A.; \Inclusion Methods for Systems of Nonlinear | The Interval

Newton Method and Modi�cations"; in Topics in Validated Computations, ed.

J. Herzberger, 1994, Elsevier Science B.V., 7{26.

[Galias 97] Galias, Z.; \Positive topological entropy of Chua's circuit: a computer as-

sisted proof"; Int. J. Bifurcation and Chaos, 7, 2 (1997), 331{349.

[Galias, Zgliczy�nski 96] Galias, Z., Zgliczy�nski, P.; \Computer assisted proof of chaos

in the Lorenz system", IMUJ preprint 1996/23, accepted for publication in Phys-

ica D.

[Guckenheimer, Holmes 83] Guckenheimer, J., Holmes, P.; \Nonlinear Oscilla-

tions,Dynamical Systems, and Bifurcations of Vector Fields"; Springer{Verlag, 1983.

[H�enon 76] M. H�enon; \A two dimensional map with a strange attractor"; Com-

mun. Math. Phys., 50, 1976, 463.

123Galias Z.: Rigorous Numerical Studies of the Existence ...



[Robinson 95] Robinson, C.; \Dynamical Systems: Stability, Symbolic Dynamics, and

Chaos"; CRC Press, Boca Raton, 1995.

[Kn�uppel 93] Kn�uppel, O.: \PROFIL | programmer's runtime optimized fast interval

library"; Technical University Hamburg-Harburg, July 1993, Bericht 93.4.

[Zgliczy�nski 97a] P. Zgliczy�nski; \Computer assisted proof of the horseshoe dynamics

in the H�enon map"; Random & Computational Dynamics, 5, 1 (1997), 1{19.

[Zgliczy�nski 97b] Zgliczy�nski, P.: \Computer assisted proof of chaos in the R�ossler

equations and in the H�enon map"; Nonlinearity, 10, 1 (1997), 243{252.

124 Galias Z.: Rigorous Numerical Studies of the Existence ...


